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ABSTRACT

This publication contains the summaries for the Fourth Annual JPL Airborne

Geoscience Workshop, held in Washington, D. C. on October 25-29, 1993. The

main workshop is divided into three smaller workshops as follows:

The Airborne Visible/Infrared h-naging Spectrometer (AVIRIS)

workshop, on October 25-26. The summaries for this workshop

appear ill Volume 1.

The Thermal Infrared Multispectral Scanner (T1MS) workshop, on

October 27. The summaries for this workshop appear in Volume 2.

The Airborne Synthetic Aperture Radar (AIRSAR) workshop, on

October 28-29. The summaries for this workshop appear in

Volume 3.
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FOREWORD

In the text and the figure captions of some of the papers for the AVIRIS and

AIRSAR Workshops, reference is made to color slides. A pocket containing a set
of all the slides mentioned in those papers appears at the end of this volume.
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1. INTRODUCTION

Tile advent of interferometric synthetic aperture radar (INSAR) imagery

brought to the ocean remote sensing field techniques used in radio astronomy. Whilst
details of the interferometry differ between the two fields, the basic idea is the same:

Use the phase information arising from positional differences of the radar receivers

and/or transmitters to probe remote structures. The success of airborne INSAR

methods (Goldstein et al., 1987) provided ample incentive to investigate numerous
other applications, e.g. topographic mapping (Zebker et al., 1986), surface ocean

currents (Goldstein et al., 1989) and internal waves (Thompson et al., 1993). In this
paper, we apply for the first time INSAR methods to the Gulf Stream boundary. A

primary advantage of the INSAR technique when applied to ocean surfaces is the

ability to observe the motion of surface scatterers.

The interferometric image is formed from two complex synthetic aperture

radar (SAR) images. These two images are of the same area but separated in time.

Typically the time between these images is very short -- approximately 50 msec for
the L-band AIRSAR. During this short period the radar scatterers on the ocean

surface do not have time to significantly decorrelate. Hence the two SAR images will

have the same amplitude, since both obtain the radar backscatter from essentially the

same object. Although the ocean surface structure does not significantly decorrelate
in 50 msec., surface features do have time to move. It is precisely the translation of

scattering features across the ocean surface which gives rise to phase differences

between the two SAR images. This phase difference is directly proportional to the

range velocity of surface scatterers. The constant of proportionality is dependent

upon the interferometric mode of operation. In our case, the total phase difference
between the two SAR images is

27rt

A_ _ Vair_ Urang e

where g is the spacing between the radar receivers, ,k is the radar wavelength, vair is

the aircraft velocity and ur_,_ is the component of the scatterer's velocity in the

range direction. The motion of the scatterers may arise from ocean currents, internal

wave motions, winds or most generally all of the above. Identifying these different



componentsof ur_nge, without recourse to additional information, is a formidable
task.

One immediately sees several possible limitations to the INSAR technique.
The time between images must be short enough that the ocean surface does not
decorrelate, otherwise the phase difference contains no new information. Also the

time between images must be long enough so that the surface features have time to

move and thus provide a phase difference. We implicitly require that the SAR images
have been corrected for the aircraft sidewards drift and yaw, both of which will

produce (unwanted) phase differences. Therefore as a practical matter the phase

difference arising from the surface motion should be greater than the errors in

compensating for aircraft motion -- the signal-to-noise ratio should be large. Perhaps

more irksome than the above is the problem of large surface velocities, when the

phase difference is greater than 27r. The interferometric image determines the phase

differences modulo 27r, therefore many velocities map onto the same phase difference.

Typically, range velocities of scatterers of approximately 0.0 m/sec., 2.7 m/sec.,

5.4 m/see., etc. all yield a zero phase difference in the interferometric image. One

possible means of lifting this phase ambiguity is to use multi-frequency and/or
multi-baseline interferometry. These methods have been discussed by Carande, 1992

and Carande el el., 1991. Therefore the interpretation of INSAR images may require

other information, additional assumptions and/or modeling.

2. GULF STREAM IMAGES

The particular interferometric images which we have analyzed are from the

1990 AIRSAR flight of July 20 th, previously identified as G-Stream NI 120-1

(Kobrick, 1990; Valenzuela et al., 1991). The complex interferometric image is the

product of one complex SAR image with the complex conjugate of the other.

Therefore the amplitude of the INSAR image is the product of the individual SAR

image amplitudes. The phase of the INSAR image is the phase difference (modulo

27r) between the two SAR images. The amplitude and phase of the INSAR image are
shown in Figure 1. The amplitude image shows no detailed structure and provides

only hints of large features. In contrast the phase image clearly depicts the Gulf

Stream boundary. The Gulf Stream boundary is the one large feature that may be

seen in the amplitude image. In addition, the phase image clearly shows the Research
Vessel Cape Henlopen, her wake and other sxnaller surface structures. We have

interpreted the dark-light banding as internal wave motion. The orientation of these

images is independently verified by the ship's wake and log--- she was southbound at
10 knots when the INSAR image was taken.

This comparison of INSAR phase and amplitude images may downplay too
much the value of complex SAR imagery. Milman et el., 1990 have developed and

applied ambiguity function techniques to complex SAR images to obtain information

about surface velocities. However, the amplitude of SAR images conveys no relevant

information about velocities (other than velocity bunching effects) and, as seen in
Figure 1, little information about small-scale surface features.

The complementary nature of SAR and INSAR images produces a powerful
oceanographic remote sensing tool. INSAR is sensitive to surface velocities whereas

SAR amplitudes depend strongly on the surface shape. Presumably these two
features (shape and velocity) are, in at least some cases, correlated. Therefore

employing the additional information which interferometry provides will assist the
interpretation of the region surveyed.
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Figure 1: The INSAR amplitude (left) and phase (right) images for run G-Stream NI

120-1 taken July 20, 1990 are displayed. The area of each image is approximately 5 km

in azimuth and 10 km in range. See text for additional discussion.

3. GROUND TRUTH INFORMATION AND MODELING

Ground truth information is available in the form of buoy measurements of

the wave spectrum and direction. Two buoys were deployed both before and after the

INSAR image of Figure 1 was taken. We have Fourier analyzed the phase image to

determine the spectrum of the wave-like structures seen throughout the image. The

frequency and direction are directly compared to the buoy data. The Henlopen's

wake also may aid in our interpretation of surface features. Thus the available ground

truth in conjunction with the INSAR image provides useful constraints for modeling

Gulf Stream boundary features.

We are currently modeling both INSAR and SAR radar return from ocean

surfaces. This is an ongoing project and results will be reported at a future date.



4. CONCLUSIONS

Our initial investigation has yielded several interesting characteristics of

INSAR imagery: The wave spectrum is clearly seen in tile phase image but not in the

amplitude. The boundary of the Gulf Stream is a strong linear feature -- barely

resolved in tile amplitude image -- which dominates the phase image. Similarly, the

Henlopen's wake is easily seen in the phase image. Of course, the ship is clearly

resolved in both tile amplitude and phase images.
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1. INTRODUCTION

The polarimetric Synthetic Aperture Radar (SAR) is a powerful sensor for high

resolution ocean and land mapping and particularly for monitoring hydrological

parameters in large watersheds. There is currently much research in progress to

assess the SAR operational capability as well as to estimate the accuracy achievable

in the measurements of geophysical parameters with the presently available

airborne and spaceborne sensors. An important goal of this research is to improve

our understanding of the basic mechanisms that control the interaction of electro-

magnetic waves with soil and vegetation. This can be done both by developing

electromagnetic models and by analyzing statistical relations between backscatte-

ring and ground truth data. A systematic investigation, which aims at a better
understanding of the information obtainable from the multi-frequency polari-

metric SAR to be used in agro-hydrology, is in progress by our groups within the

framework of SIR-C/X-SAR Project and has achieved a most significant

milestone with the NASA/JPL Aircraft Campaign named MAC-91. Indeed this

experiment allowed us to collect a large and meaningful data set including multi-

temporal multi-frequency polarimetric SAR measurements and ground truth.

This paper presents some significant results obtained over an agricultural flat area

within the Montespertoli site, where intensive ground measurements were carried

out. The results are critically discussed with special regard to the information

associated with polarimetric data.

2. EXPERIMENT DESCRIPTION

During the Multisensor Airborne Campaign (MAC-91), the site of Montespertoli
(Italy) was imaged on three different dates (22 June, 29 June and 14 July) by the

airborne JPL polarimetric SAR (AIRSAR) operating at P-, L- and C- band

(Canuti et al., 1992). Three passes were performed during each flight data, in

order to cover the most significant sub-areas with different incidence angles 0 be-

tween 20* and 50*. Nominal pixel sizes obtained on the 16 looks images were 6.6

m in range and 12 m in azimuth. The test site covers the basins of two small rivers

and contains a relatively large flat area, along the border of the Pesa river, which

includes agricultural fields of various crops (i.e. alfalfa, colza, corn, sorghum, sun-

flower, wheat) bare soils, olive-yard, vineyards and a few small forests. The area

was equipped with two trihedral corner reflectors of 180 cm and one of 240 cm,
supplied by the JPL, and deployed along the Pesa river. In addition, a few

"extended homogeneous targets", namely three plots of bare soil with different

surface roughness, one field of alfalfa and one of sunflower, had been specifically

prepared, in the same sub area, to act as "distributed" calibrators. The ground data,
which were collected on selected fields at the same time as the remote sensing

measurements, regarded all the significant vegetation and soil parameters, such as

leaf area index (LAI), plant water content (PWC), dimensions of leaves and stalks,

soil moisture content and roughness. During the experiment the average

gravimetric soil moisture of the first 5 cm layer changed from about 15-20 % (on



June 22) to about 10% (on July 14). At the same time the leaf area index (m2/m 2)
of sorghum and corn increased from - 0.5 to - 3.5, that of sunflower from ~ 0.5
to ~ 3.5. Alfalfa leaf area index ranged from ~ 0 to - 4. Wheat and colza were in
the ripening stage and therefore their LAI was almost 0; some of these fields were
harvested at the time of the last flight.

3. DATA ANALYSIS

Calibrated (amplitude and phase) polarimetric data, collected over the agricultural
area on alfalfa, corn, colza, sunflower, sorghum, bare soil, olives, vineyard and on
a few forested areas, at incidence angles of 35 ° and 50 °, have been analyzed.

Background - Scattering sources may be grouped in broad categories, each
associated to typical scattering behaviors, as shown in recent works (e.g. Ulaby et
al. 1990, Van Zyl 1989). In particular: a) Soil response is a surface scattering
effect. This effect is important for bare soils and, in general, at low frequencies,
where many agricultural crops are rather transparent, ooRn is appreciably higher

than O*aR and oOnv is low. At lower frequencies (P and L band) oOvv> OOHH,
as predicted by the Small Perturbation surface scattering model (Ulaby et al.

1982), while at higher frequencies (C band) O*vv = O*nH. b) Vertical structures,
like forest trunks and crop stalks, produce double-bounce scattering. In general,
this mechanism is important at P band for forests and at L band for some

agricultural crops like corn and sunflower. O*uv is low, as in the soil scattering

case, but, differently from the soil, o*nn is generally higher than O*vv and the
large difference between o*RL and o*aR disappears, c) Ensembles of inclined
cylindrical structures, like forest branches and crop stems, produce volume
scattering with an appreciable presence of multiple scattering. The differences
o*nH - O*nv and O*vv - O*nv are much lower than those for soil and vertical

structures. In circular polarization, O*RL = o*aR. d) Ensembles of inclined planar
structures, like leaves, also produce volume scattering; however, an appreciable

amount of single "facet" scattering is present, o*rm - O*Hv and O*vv - O*nv
differences are relatively low, similarly to the cylinder case, but at circular

polarization, the "facet" effect generates appreciable positive O*rtt, - O*Rrt
differences. The scatterer dimensions have important effects too. Let branches and
stems be represented as ensembles of cylinders with the length proportional to the
radius. For a canopy of equal cylinders, the backscatter coefficient changes with
the cylinder length (expressed in wavelengths) and shows a maximum (Karam et
al. 1992). It follows that, for each band, there is a range of cylinder dimensions
generating a dominant contribution to the backscatter. For leaves, which can be
described as discs, scattering is dependent on thickness and moisture content
(Ferrazzoli et al. 1993).

4. SURFACE TYPE DISCRIMINATION

Some significant backscattering features of agricultural surfaces can be inferred

from Fig. 1 which represents the cross-polarized backscattering coefficient (O*nv)
of well developed (Plant Water Content - PWC > 1 Kg/m 2) crops measured at L-

band and 0 = 35*, as a function of the corresponding o*rl v at C-band. At L-
band there is a continuous increase of backscatter as the dimensions of scattering
elements increase from the 'small leaf' crops such as alfalfa (A) and sorghum (S)
to the bigger olive-yards (O) and forest trees (T), passing through 'broad leaf'
crops such as sunflower (F) and colza (R). At C-band, bare soil can be discrimi-
nated from crops among which colza, which has a well ramified structure, has the
highest backscattering value.The relatively strong capability of C-band backsc-
attering to discriminate agricultural surfaces is improved if circular polarization
data are used as well (Baronti et al. 1993). Indeed, bare soils and plants character-
ized by relatively large leaves, like sunflower, corn, sorghum, show a "facet" sca-

ttering with OORL > O'*RR. while, in the other fields, OORL _ OORR . However



colza crops show rather high backscatter

at both RR and RL polarizations, due to

their scattering elements (stems, pods)
which are numerous and relatively large,

while the elements of wheat and alfalfa

crops produce lower backscattering. It
must be noted that, unlike L-band,

discrimination is feasible also in the case

of moderate growth. Figure 2 shows

o*HV versus o'Ha measured at P-band
and 0 = 35*. According to the previous

considerations the scattering in HV pol.

is mainly due to inclined and relatively

large cylindrical elements, like branches
of forest, oliveyard and vineyard, while

the agricultural vegetation is rather

transparent. Three classes of o*HV val-

ues may be identified corresponding to:

forests (T), olive-yard and vine-yard (O

and V) and agricultural fields (A). Ac-

cordingly P-band backscattering, which
is
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dominated by the tree branches and the
soil trunk interaction, appears rather

effective in discriminating broad classes

of surfaces (forest, olive-yard, vine-yard,

agricultural fields) but their utility in
discriminating the various agricultural

crops is poor. At L-band, where scat-

tering is mainly due to stems and large

leaves, the SAR data appear more suitable

for separating the 'broad ieaff crops (corn

and colza) from other crops; this discrim-
ination is improved using C-band data

which are particularly sensitive to small

stems and leaves (Coppo et al. 1989). Note

that a discrimination between alfalfa and

wheat fields does not appear feasible at

C-band; however, recent works indicate

that it becomes possible by means of both

active and passive remote sensing systems

if higher frequencies (X- and K- bands) are used (Ferrazzoli et al. 1992).

SENSITIVITY TO SOIL MOISTURE AND VEGETATION BIOMASS

Soil Moisture - The measurement of soil moisture (SMC) with radar has been the

subject of much research over the past years. However, a reliable extraction of
such information from SAR data is still questionable in that the signal is strongly

influenced by surface roughness and vegetation cover. In our case data collected

at L and C-band show very little correlation with SMC even at 0 = 35*. A slightly

better result has been obtained at P-band where the o* I_It has shown a sensitivity

to SMC equal to 1.0 dB/% SMC and a correlation coefficient equal to 0.7.

Herbaceous crops - In this experiment the agricultural vegetation was rather

transparent at P-band while, at C-band, it generated considerable scattering
effects even in the case of moderate growth. Indeed, the highest correlations with

plant growth have been noted at L-band. On the other hand o*t_ v, which is low



for bare soils and is mainly associated to
the presence of inclined stems and large -16
leaves, is a relatively good growth indi-

cator. Figure 3 shows L-band OOHv as
a function of the Plant Water Content _-20

(PWC, kg/m2). Samples of sorghum (S),
corn (C), sunflower (F) and bare soil >

-24
have been included. Very rough (ploug- o

o
hed) bare soils are labeled 'PB', while E

moderately rough (tilled or rolled) bare _-2a
soils are labeled "TB'. The correlation is

generally good; the lowest o°HV values

are associated with moderately rough -32
bare soils and with sorghum fields at a
very early stage of growth, while the
highest values are associated with well
developed sunflower crops.Ploughed
bare soils show relatively high val-
ues,indicating that the roughness plays a

rr

PB C
F

$S

f cs
S

FF

6 i _ 3 4
PWC

Figure 3- o*lav vs. PWC (Kg/m z) at
L-band, 0=50*

role similar to that of vegetation growth. The dynamic range is notable, in the

order of 10 dB. The plant growth may be also related to O*HH - O*VV at L-band.
In fact, for bare soils, O*HH < O°VV while, for developed crops, the soil plant
double bounce scattering, which may be rather important at L-band, produces a
positive O*HH - O*VV difference.

CONCLUSIONS

Polarimetric SAR measurements carried out over forests, oliveyards, vineyards and
agricultural fields indicate that P-band data are effective in discriminating among
broad surface categories, L-band data allow identification of well developed sun-
flower, corn and colza crops, and C-band data discriminate among different kinds

of herbaceous crops even in the case of moderate growth. A fairly good sensitivity
of o°HV and O*Hn - O*VV tO the Plant Water Content of some agricultural species
is observed at L-band.
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1. OVERVIEW

Remote sensing observations of terrestrial dune morphologies provide
information on sand transport, climate, and soil processes associated with aeolian
processes. In this study AIRSAR images of the Stovepipe Wells Dune Field, California,
were examined to assess the degree to which dune types can be determined from radar

images and the factors leading to the formation of four different dune types in one
locality. The images were acquired during the Geologic Remote Sensing Field

Experiment (GRSFE; Evans et al., in press) and later. These images provide a unique
opportunity to enhance the knowledge of how radar images allow discrimination of dune
forms.

2. RADAR DATA

Radar images were obtained in September 1989 and May 1992 by the Jet
Propulsion Laboratory synthetic aperture radar - AIRSAR. The images have a resolution
of -12 m per pixel and are acquired in C-band (_, = 5.6 cm), L-band (L = 24 cm), and
P-band (_ = 67 cm). All images were calibrated using POLCAL (van Zyl et al., 1992).
Although the entire Stokes matrix is saved for the images and any polarization can be
extracted, only the co- and cross-polarized data were extracted (HH; VV; HV-VH).
Figure 1 (See Slide 12) shows an image of the total power return at Stovepipe Wells
for C, L, and P-band in HH polarization.

The illumination was from the west and the flight direction from north to south.

The look angle was 45 °.

3. OBSERVATIONS

The Stovepipe Wells Dune field covers an area of- 100 km 2 in northern Death

Valley, California (117°06 W 36 ° 39 N). Four dune types, each characteristic of a
different wind regime, occur at Stovepipe Wells: reverse dunes, star dunes, transverse, and
linear dunes. In addition to dunes, C-band images reveal a mantle of sand around the dune
field. Field observations show that local saline crusts in the sand mantle cause microscale

roughness variations that give a mottled radar backscatter cross section that is prominent
in C-band but less pronounced in P and L-bands.

3.1 Reverse dunes

The reverse dunes are low (typically < 5 m high), formed by temporal reversals
of the wind direction through the valley (N - S). The reverse dunes are observed in the
radar images as dark and bright linear features on the northeast part of the field. The dunes

appear as dark narrow streaks aligned east-west with bright interdune regions. The low
reverse dunes are not seen in P-band, but are visible in C-band. They are best observed in

the H-H images, and not seen in the cross-polarized image.



3.2 Star dunes

The star dunes have a maximum height of 40 m above the surrounding surlhce

and arc lormed by polymodal winds transporting sand to the center of the dune field. Star
dunes have at least three flanks which create a trihedral corner reflector effect in radar

images. The result is an extremely bright speckle from the interdune zone facing the

antenna. These dunes are easily recognized in AIRSAR images of Stovepipe Wells

because of the quasi-speckular return from the corner between the dune flanks. The quasi-

speckular signature is visible in all wavelengths.

3.3 Transverse Dunes

Transverse dunes are lound in the northern part of the dune field. These are

fornmd by unimodal winds blowing from the north. The winds from the south (that are

partly responsible for the reverse dunes) are blocked by a mountain and by the large star

dunes. The transverse dunes appear in the radar images as alternating bright and dark

stripes. These dunes exhibit bright lee slopes and dark narrow sloss slopes. Transverse

dunes tire visible in all wavelengths but are not seen in the cross-polarized data.

3.4 Linear dunes

In the west part of the dune field there is a set of linear dunes which me formed

by hi-directional winds coming from the northeast and southeast. Biota and Elachi (1981)

state that tim interdune spacing needs to bc at least 3 to 4 picture elements wide to be able

to detect linear dunes. The interdunal spacing of these dunes is greater than 4 pixcls. In

the 1992 image these dunes appear as narrow reflective streaks. Because the linear dunes

arc in the very near range, their form is more difficult to resolve in this image than other

dune lypes.

3.5 Vegetated dunes

Very sparse vegetation exists at the Stovepipe Wells Dune Field. The

vegetation is primarily in clusters over the sand mantle and in an area where tim dune

torms change from reverse to star dunes. While vegetation can be seen in all images it is

most pronounced in the cross-polarized images. Comparison of the vegetation in the

radar images to aerial photographs from 1948 do not show any spatial change in the

vegetation pattern.

4. Conclusion

The Stovepipe Wells Dune Field provides a unique opporttmity to observe
several dune forms in one scene. These forms include reverse dunes, star dunes,

transverse, anti linear dunes. A sand mantle surrounds the dune field and can also be

observed in the radar image. Dune types were discriminated best in co-polarized channels.

Three major wind directions are responsible for the various dune forms. Wind

from the north and south are responsible for the reverse dunes, winds from north the for

the Iiansverse dunes, and the north - south and westerly winds form the slar dtlnes. The

\rinds also reflect the topographic configurathm of this part of tile valley.

Vegetation over the dunes was most pronot, nced in the cross-polarized ilna_es.

I_ancastcr ct al. (1992) finds that cross-polarized images arc most useful in differcntiatin::

act+re from inactive dunes. This is because the vegetation backscatter signature is

prcscnl over inactive dunes.

Future studies shouhl include multiple look and incidence angles t_ dote, mine it

the dune forms can still be seen at other angles.
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Figure 1. AIRSAR image of Stovepipe Wells Dune Field, Death Valley, California. The image shows
total power for C, L, and P-bands
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1. INTRODUCTION

The interaction of climate and topography in mountainous regions is

dramatically expressed in the spatial distribution of glaciers and snowcover.
Monitoring existing alpine glaciers and snow extent p.rovides insight into the
present mountain climate system and how it is changing, while mapping the
positions of former glaciers as recorded in landforms such as cirques and
moraines provide a record of the large past climate change associated with
the last glacial maximum. The Andes are an ideal mountain range in which
to study the response of snow and ice to past and present climate change.
Their expansive latitudinal extent offers the opportunity to study glaciers in
diverse climatic settings from the tropical glaciers of Peru and Bolivia to the
ice caps and tide-water glaciers of sub-polar Patagonia.

SAR has advantages over traditional passive remote sensing
instruments for monitoring present snow and ice and differentiating moraine
relative ages. The cloud penetrating ability of SAR is indispensable for

perennially cloud covered mountains. Snow and ice facies can be
distinguished from SAR's response to surface roughness, liquid water
content and grain size distribution. The combination of SAR with a
coregestered high-resolution DEM (TOPSAR) provides a promising tool for
measuring glacier change in three dimensions, thus allowing ice volume
change to be measured directly. The change in moraine surface roughness
over time enables SAR to differentiate older from younger moraines.

Polarimetric SAR data have been used to distinguish snow and ice

facies (Shi et al., 1991) and relatively date moraines (Forster et al., 1992).
However, both algorithms are still experimental and require ground truth
verification. We plan to extend the SAR classification of snow and ice
facies and moraine age beyond the ground truth sites to throughout the
Cordillera Real to provide a regional view of past and present snow and ice.
The high resolution DEM will enhance the SAR moraine dating technique
by discriminating relative ages based on moraine slope degradation (Bursik,
1991).

2. 1993 FIELD CAMPAIGN

The 1993 South American AIRSAR campaign acquired data at four
sites in the Peruvian and Bolivian Andes. TOPSAR data was acquired at all

13



sites. Threeof the four sites, the Quelccaya Ice Cap, the Cordillera Blanca,
both in Peru, and the Cordillera Real, Bolivia were targeted for their
numerous modern glaciers and Pleistocene glacial landforms. The fourth,
Potosi, Bolivia was chosen for its well preserved multiple moraines and
alluvial outwash plains. The Cordillera Real was chosen as the ground
truth site because of the easy access to its glaciers.

Ground truth data were acquired on two glaciers in the Cordillera
Real during the AIRSAR flight. The two glaciers reside on adjacent
mountains of the Cordillera north-east of La Paz. We recorded the

following data from the Chacaltaya glacier: surface roughness profiles,
snow depth transacts, and snow pit profiles of density, temperature,grain
size distribution, and wetness. Measurements were taken on two days
previous to the flight, the day of the flight and the day after the flight.
Metrological data were recorded on the flight day and the following day.
French collaborators from ORSTOM took a set of similar measurements on

their research glacier, the Zongo glacier, during the AIRSAR flight. Four
comer reflectors (manufactured in Bolivia) were deployed and their
positions determined with GPS on and around the Chacaltaya glacier for co-
regestation. The entire Cordillera was imaged with six swaths, five parallel
to the mountain range and one oblique, optimizing the viewing geometry of
the two neighboring ground truth glaciers.

During the two weeks after the SAR flight we collected samples
from original surfaces of moraine boulders at several locations in the

Cordillera Real and at the Potosi site for 36C1 cosmogenic ray dating. This
will provide numerical dates for the SAR derived moraine chronology.

3. ANTICIPATED RESULTS

The measured surface roughness and dielectric properties (snow
wetness, grain size distribution and density) of the snow and ice will be
used to interpret the polarization signatures obtained from different snow
facies present on the glaciers. We will also map the snow facies boundaries
on the test glaciers and extrapolate these results to glaciers throughout the
Cordillera. We anticipate this research will provide the ground work for
establishing a three dimensional base line for future monitoring of annual
snowline and glacier positions over a regional setting. This DEM will be
used for comparison with our present digitized topography and SPOT
derived DEMs. The high resolution DEM derived from TOPSAR combined

with a regional moraine chronology will allow detailed glacier
reconstruction and ice volume calculations for known times during the
Pleistocene. The AIRSAR coverage of the Cordillera Real will overlap with
a SIR-C/X-SAR site providing an instrument and temporal comparison.
Data from the Patagonian SIR-C/X-SAR supersite along with a similar
ground campaign will allow a direct comparison of polarimetric SAR
response to high elevation tropical glaciers and mid-latitude low elevation
glaciers.
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1. INTRODUCTION.

It is widely accepted that estimates of forest above-ground biomass are required

as inputs to forest ecosystem models (Kasischke and Christensen, 1990), and that SAR

data have the potential to provide such information (e.g. Kasischke et al., 1991; LeToan

et al., 1992). This study describes relationships between polarimetric radar backscatter and

key biophysical properties of a coniferous plantation in upland central Wales, U.K. Over

the test site topography was relatively complex and was expected to influence the amount
of radar backscatter.

) TEST SITE AND DATA

As part of the NASA MAC Europe (Curran and Plummer, 1992) the JPL

AIRSAR was flown over the Tywi forest, in central Wales, U.K. This is an area of

coniferous forest plantations, consisting of Sitka spruce (Picea sitchensis), Lodgepole pine

(Pinus contorta var. latofoliar) and Japanese larch (Larix kaempfei), surrounding the Llyn

Brianne reservoir. It is an upland region characterized by variable topography of up to
500m above mean sea level with some valley slopes of 45 ° or more. For this study only

areas of Sitka spruce were analyzed since this was the dominant species with the widest

range of planting dates on a variety of slope/aspect orientations relative to the SAR. All

the species are densely stocked with planting spacing typically 2 metres. The ground data

comprised results of an intensive field survey for a limited number of stands; and for a

much larger area, the planting date of forest compartments was known from stocking

maps.

The AIRSAR images consisted of a slant range pixel resolution of 3.4m and

incidence angle ranged from approximately 20 ° near-range to between 55 ° and 60 ° far-

range. The Stokes matrix data were analyzed using POLTOOL, a polarimetric SAR data

processing package. P-band data were subject to interference at all polarization
combinations and were consequently not used in the analysis. This is a disappointing
situation since some authors have found P-band data to be most sensitive to forest biomass

(e.g. LeToan et al., 1992).

2. BACKSCATrER RELATED TO STEM BIOMASS ESTIMATES

Estimates of key biophysical parameters were derived for forest stands within the

Cefn Fannog plantation managed by the U.K. Forestry Commission. Data available from

the Forestry Commission included surveys performed in 0.01ha plots at regular intervals
in the area. From standard forestry mensuration data the average basal area, stem volume

and stem biomass for each stand were derived. The average intensity of backseatter

(amplitude) for a group of pixels corresponding to a forest stand was extracted from the
AIRSAR imagery, synthesized into HH, HV and VV polarizations using POLTOOL.

t,n mcm B.at nua:n
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Figure 1. Plots of amplitude versus average stand biomass using data

synthesized into HH, ltV, and W polarizations in (a) C-band, and (b) L-band.

Figure 1 shows plots of C-, and L-band backscatter versus stem biomass. The

amount of C-band backscatter was lower than L-band. Luckmann and Baker (1993), using
the same data set, attribute this to a lack of scatterers at the same size as C-band

wavelengths. In Figure la the best-fit lines do not show any significant increasing
relationships in any of the polarization combinations. This is to be expected if it is

assumed that C-band scattenng takes place in the upper levels of the canopy, since all the

stands which were sampled had uniform canopy characleristics. The L-band plots (Figure
l b) show positive relationships. The highest correlation coefficient was derived for the W

polarization data (r=0.62, significant at the 95% level of confidence). Stronger
relationships may have been obtained with the longer wavelength P-band data.

3. BACKSCATTER RELATED TO STAND AGE.

Over large areas it ks logistically iml:x_sible to carry out intensive field surveys

in order to derive biomass estimates. However, accurate Forestry Commission stock maps

exist for the whole of the Tywi forest containing information regarding the planting dates

of forest stands. Stand age was used as a surrogate for biomass and only unthinned stands
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Figure 2. Plots of L-band HH amplitude versus stand age for (a) all stands; (b) stands on

steep slopes facing away from the SAR removed; (c) stands on level ground removed.

were considered in the analysis ensuring, as far as possible, uniform canopy structure and

density of boles.

Figure 2a shows a plot of L-band HH polarization backscatter versus stand age.

"lhere was a general increase in backscatter until the age of 25 years. There was then

significant variability in backscatter illustrated by a weak negative relationship. However,
it was to be expected that as trees reach maturity that the amount of backscatter will

increase at a slower rate until a saturation point is reached (Groom et al., 1992). It was

expected that topographic variations will influence the amount of backscatter. In order to
reduce the effect of abnormally low backscatter, all stands at an aspect of between 90 ° and
180 ° relative to the SAR look direction and with slope angles greater than 5 ° were

eliminated (Figure 2b), i.e. stands on steep slopes facing away from the sensor were
excluded from the analysis. Some of the variability disappeared and the correlation rose

to r=0.34.

Much of the variability that still existed was found to be the backscatter from

those stands that were situated on flat ground (slope angles typically less than 10). These

stands were located in a basin surrounding a natural lake. Productivity of Sitka spruce
stands is related to soil water content, which varies as a function of slope angle (Coutts

and Philipson, 1978). Stands situated on well drained slopes tend to have higher growth
rates and hence more biomass compared to stands of a similar age in areas of poorly

drained soils. Therefore topography indirectly determined the amount of biomass
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production.Whenstandssituatedonslopeanglesof less than 1° were eliminated from the

data set the resulting relationship (Figure 2c) resembled those derived by previous authors

from forests in different environments, and the r-value again increased (r=0.71). Therefore
in this instance, age is not a good surrogate for biomass unless other environmental
information is taken into account.

4. CONCLUSION.

This study has shown preliminary results of analysis of radar backscatter in a

dense spruce forest plantation in an upland environment, although these conclusions need
to be validated with larger data sets. It was found that:

1. A significant relationship exists between L-band VV backscatter and stem biomass

estimates derived from intensive field survey.

2. Topographic variation influences the amount of backseatter directly as a result of

viewing geometry and indirectly as a determinant of biomass production. This latter point
limits the use of age as a surrogate for biomass.
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1. INTRODUCTION

The Harz Mountains in the North of Germany have been a study site lk)r several remote

sensing investigations since 1985, as tile ,nolmtainous area is one oI the forest regions m

Germany heavily affcctcd b 5' Iorest decline, especially in thc high altitudes above 800 m. In

a research programme at the University ol Berlin, methods are developed for improving

remote sensing assessment of forest structure and forest suite by additional (;IS

information, using several datasets for establishing a forest information system

(Kcnncweg, Schardt, Sagischcwsky, 1992).

The Harz has been defined as a testsite lk)r the SIR-C / X-SAR mission which is going to

deliver multi frequency and multipolarizational SAR data from orbit. In a pilote project led

by DLR-DFD, these data are to be investigated for forestry and ecology purposes. In a

preparing flight ca,npaign to the SIR-C / X-SAR mission, "MAC EUROPE 1991",

performed by NASA/JPL, an arca of about 12 km by 25 kin in the Northern Harz was

covered with multipolarizational AIRSAR data m the C-, L- and P-band, including the

Brocken, the highest mountain of the Harz, with an altitude of 1142 m.

The multiparameter AIRSAR data are investigated for their information content on the

forest state, regarding the following questions:

- information on forest stand parameters like forest types, age classes and crown density,

especially for the separation of deciduous and coniferous forest,

-information on the storm damages (since 1972) and the status of regeneration,

-information on the status of forest destruction because of forest decline,

-influence of topography, local incidence angle and soil moislurc on the SAR daub.

Within the project various methods and tools have been developed for the investigation of

multipolarimetric radar backscatter responses and for discrimination purposes, in order to

use the multipolarization information of the compressed Stokes matrix delivered by JPL.

2. AVAILABLE DATA

The AIRSAR scenes were flown at July 12th, 1991. Two profiles were heading North with

looking angles of 45 (leg. and 55 deg., two profiles heading South, with the same looking
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angles.Thereforedataareavailablerepresentinganilluminationofthemountainsfromthe
EastandfromtheWest,eachprofilecutintoNorthandSouthscene(Keiletal.,1993).

Paralleltothesurvey,70testareasintheupperHarzhavebeencheckedatthegroundfor
foresttypeandtreecomposition,ageclass,crowndensity,topographicfeaturesandground
cover.ALANDSATTMscenefromJuly10th1991(twodaysbeforetheAIRSARflight)
andadigitalelevationmodelisavailableforcomparison.Withinacooperationwiththe
TechnicalUniversityof Berlin,infraredcolourphotoscanbeused.A largeprogressfor
investigationwasreachedbyshortwhenabout140polygonsfromairphotointerpretation
of foreststateandfrom forestmanagementdatacouldbe integratedwithinthis
cooperation.ThedataoverlayisbasedonageocodingofthreeAIRSARscenesperformed
byJohanneumResearch,Graz,includingterraincorrection.

3. TOOLSFORINVESTI(;ATIONOFPOLARIZATIONDATA

Inordertostudysignaturesofpolarimctricbackscatter,severalextensionsoftheavailable
POLTOOLsoftwarebyJPLwerefoundnecessary.Thus,forthesynthesisoflx)larimetric
informationoftargetareas,aninputmaskfilewascoupledwiththeSYNTHESISsoftware
basedonarbitraryclosedpolygons(Tares,1993).

BesidesseveralothertoolsIor visualizationandslalistical evaluations, the following

representation was found very useful: The possible discrimination of two forest stands on

certain polarization states can not be checked by comparing mean backscatter amplitudes

alone. Thus, a deduction of standard deviation, assuming Gaussian distribution, was

performed for the marked forest reference areas and given polarization states directly fro,n

the Stokes matrix (Tares, 1993). As ellipticity seemed not to have a dominant influence lor

discriminalion, a two dimensional representation was used ,nainly: For co-polarization

and cross-polarization, the stand-averaged backscalter amplitude + standard deviation

can be presented in dependence of orientalion angle.

By known mean values M and standard deviation Sdev for two landcovcr classes a and b, an

expected accuracy of a Bayesian classificalion for one feature can be estimated using the

separability index (Dobson el al., 1992):

S (a,b/ = abs(M(a) M(b)) / (Sdcv(a) + Sdcv(b).

For Gaussian distribution, values of S > 1.5 correspond to a classification accuracy bctlcr

than 90%. The new developed program "discrimination" cqables a separability

optimization by changing both orientation anglcs and clliplicity angles for pairs of forest

classcs(Tares, 1993).

The statistical evaluations _crc used to prepare classification investigations. In order to

take into account the speckle and textural inlbrmalion, first classification approaches were

performed using the EBIS system (an "evidenced bascd inteq3remtion system") by

Lohmann, 1991, developed and installed al DLR. By this system there are supported

distribution functions describcd by, multinomial statistics besides Gaussian dislributions.
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4. PRESENT RESUH'S

From visual interpretation and statistical evaluations, several characteristics could be

deduced for the AIRSAR data of the Harz study site.

L-band data seem to delivcr the best single band information for separation of deciduous

and conilerous stands, when two or three characteristic polarization states can be used. This

is due to the fact, that polarization response vary much more for spruce stands than li)r

deciduous stands with changing orientation angle (showing a maximum near HH and a

minimum near VV for co-polarization of spruce). Age classes arc difficult to delineate in

L-band alone, cultures and clearings can bc detected well (Raupcnstrauch, 1993). The

high-level spruce stands with Iowcr crown dcnsily can be distinguished against the dcnscr

stands in the North, for which the different texture gives also iuilX)rlant )hior|hal)on.

The three polarizations :it P band show thelughcstditlcrcnciation _.ilhinthe fores(areas.

Two influences besides crowll and stein paranieiers scent it) overlay Iorcsl illforlnation:

P-barid shows the slrongcsl rckilions to the It)pography, P-tttt and P VV, not P ttV, rcflecl

information not correlated with forest stand paranicters; investigations are planned to

check how far soil types, soil moisture and ground cover are responsible for thai.

Weakest influences by topography arc shown m the C-band. The polarization intkmnation

is smaller than in L-and P-band, leading to a low differentiation between deciduous and

coniferous trees. There is a higher potential for the differentiation of regeneration states

(clearings / cultures) and additional infornlation for ago class separation (thick(is / timber).

An example of polar)metric signatures for thrcc different stand types is shown in Fig. 1. The

spruce and the deciduous stand can be distinguished in L and P-band, not in C-band, the

orientations VV and HV seem best for that separation. VV-polarization has proved the

most informative orientation for C-band, e.g. for the separation of cultures from spruce,

pole and old timber (Kcil ctal., 1993).

For the present classifications by EBIS, dalasets of L-HH, L .VV and L HV as wcll as

C-VV and P-HV proved a suitable base. hnl_)rtant for classification was thc use of local

incidence infornialion which ix avadablc fiery in the co-rcgistialcd incidence ailglc ili_.isk.
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1. INTRODUCTION

Polarimetric Airborne Synthetic Aperture Radar (AIRSAR) data were collected
for the Geologic Remote Sensing Field Experiment (GRSFE) over Death Valley,
California, USA, in September 1989 (Evans and Arvidson, 1990; Arvidson et al, 1991).
AIRSAR is a four-look, quad-polarization, three frequency instrument. It collects
measurements at C-band (5.66 cm), L-band (23.98 cm), and P-band (68.13 cm), and has a
GIFOV of 10 meters and a swath width of 12 kilometers. Because the radar measures at

three wavelengths, different scales of surface roughness are measured. Also, dielectric
constants can be calculated from the data (Zebker et al, 1987).

The scene used in this study is in Death Valley, California and is located over

Trail Canyon alluvial fan, the valley floor, and Artists Drive alluvial fan. The fans are
very different in mineralogic makeup, size, and surface roughness. Trail Canyon fan is
located on the west side of the valley at the base of the Panamint Range and is a large fan
with older areas of desert pavement and younger active channels. The source for the
material on southern part of the fan is mostly quartzites and there is an area of carbonate
source on the northern part of the fan. Artists Drive fan is located at the base of the Black
Mountains on the east side of the valley and is a smaller, young fan with its source

mostly from volcanic rocks. The valley floor contains playa and salt deposits that range
from smooth to Devil's Golf Course type salt pinnacles (Hunt and Mabey, 1966).

2. CALIBRATION

The AIRSAR data were calibrated to allow extraction of accurate values of rms

surface roughness, dielectric constants, sigma-zero backscatter, and polarization
information. The data were calibrated in two ways, assuming a flat surface, and using a

digital elevation model to remove topographic effects. Both calibrations used in-scene
trihedral comer reflectors to remove cross-talk, and to calibrate the phase, amplitude, and

co-channel gain imbalance (van Zyl, 1990). The altitude of the aircraft was measured
incorrectly because the plane was flying over the Panamint mountains and imaging the
valley floor. This was corrected in the calibration in both cases. A digital elevation
model (DEM) was generated by digitizing four USGS topographic quads using Arc/Info.
This DEM was registered to the radar scene and used in the calibration to remove the
effects of topography (van Zyl et al, 1992). The near-range part of the image contains
Trail Canyon fan which slopes away from the radar look direction and has the largest
topographic effect. Artists Drive fan, in the far range, has a gentle slope which did not
effect the calibration greatly. The comer reflectors used in the calibration were located on
Trail Canyon fan. In the calibration without the DEM correction, the calibrated
polarization signatures for the comer reflectors were not ideal. However, once the DEM
was used, the calibrated signatures were much better. Figure 1 shows before and after

DEM calibration polarization signatures for a comer reflector in C-band. Also, the
sigma-zero values changed slightly with the DEM correction. Areas that face away from
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theradarlook direction due to topography have DEM corrected sigma-zero values that are
greater than (less negative) those that are DEM uncorrected. Areas that face toward the

radar look direction have DEM corrected sigma-zero values that are less than (more
negative) those that are DEM uncorrected. Areas that are flat, without topography, have
sigma-zero values that are the same in both calibrations.

3. INVERSION AND ANALYSIS

The first-order small perturbation model (Evans et al, 1992; van Zyl et al ,1991;
Barrick and Peake, 1967) was used to estimate the surface power spectral density and the
dielectric constant at every pixel by performing an inversion using the AIRSAR dam.
This model is valid only for very smooth surfaces. Results from the small perturbation
model inversion are three values, one for each of the radar frequencies, that describe the
power spectral density of the surface and a value for the dielectric constant at each
frequency. The power specmim of a geologic surface is approximately linear in log-log
space. Fitting the three points from the inversion with a line using a least-squares
method produces slope and intercept values that allow calculation of the fractal dimension
of the surface and arms surface roughness value. The slope of the power spectrum is
related to the two-dimensional fractal dimension of the surface. The fractal dimension of a

surface describes the scaling properties of the topography (Mandelbrot, 1982). A surface
may have a fractal dimension between 2 and 3 and as the fractal dimension increases,
heights of nearby points become more independent (Brown and Scholz, 1985). The
intercept of the power spectrum can be directly related to a rms surface roughness using
forward modelling. Using the fractal dimension and rrns surface roughness calculated
from the radar inversion power spectrum, a synthetic three dimensional plot can be made
that represents the surface (Huang and Turcotte, 1989; Kierein-Young and Kruse, 1992).

A modified small perturbation model (van Zyl, personal communication; Zebker
et al, 1991) was also used to estimate the rms surface height and dielectric constant at
every pixel by performing an inversion using the AIRSAR data. This model modifies the

small perturbation model to extend the validity range to all surfaces by including an
empirically derived function that approximates the change in roughness with backscatter.
Two versions of the modified small perturbation model inversion were used. The first

assumes a constant value for the slope of the power spectrum. The second method uses,
at every pixel, the power spectrum slope obtained from the small perturbation model
inversion. Results from both the modified small perturbation models are values for the
rms surface roughness and dielectric constant for each frequency.

4. RESULTS AND CONCLUSIONS

The results from the three inversion models are shown in Table 1 compared with
field data for five sites. These five sites consist of three alluvial fan units, a playa, and
Devil's Golf Course type salt pinnacles. The active fan site is from the most active
channel on Trail Canyon fan, the desert pavement site is also from Trail Canyon fan, and
the third site is from Artists Drive fan. Field surface roughness data were obtained from
digitized helicopter stereo pairs (Farr, personal communication) of each site and from an
USGS Open File Report (Schaber and Berlin, 1993). Field dielectric measurements were
made with a C-Band dielectric probe. In general, the results from the small perturbation
model underestimates the value of surface roughness. In both of the modified small
perturbation models, the surface roughness values generally increase with frequency. The
roughness values in the model with a constant power spectrum slope value (y) are larger
than those from the model using the power spectrum slope from the small perturbation
model. The P-Band data seem to match the field data more closely than the other bands.
However, this may be because of the dielectric values. The dielectric values are most
reasonable in the small perturbation model. The dielectric values in the modified models

are too high except in P-Band. The modified small perturbation model was tried
assuming a dielectric constant equal to 3.0 for every pixel. This inversion produced
surface roughness values that were too large in most cases.
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Usinginversionmodelstoobtainsurfaceroughnessand dielectric constants from
AIRSAR data produces quantitative results that are reasonably accurate. The small
perturbation model tends to give the overall best results for dielectric constants. C-band
and L-band data in the modified small perturbation model tend to produce dielectric
constants that are too high. P-band data in the modified model produces the best overall
results for both surface roughness and dielectric constant. The results from the modified
model with a constant power spectrum slope are similar to those of the model with
variable power spectrum slopes. Since surfaces do show differences in their power
spectrum slopes, it is more accurate to include this variation in the inversion model. The
results of these inversion models can be used to help in determining the active surficial

processes and the age of alluvial fan surfaces. Combining the inversion results with data
from other sensors can help to determine why roughness characteristics are spatially
variant (Kierein-Young and Kruse, 1991). For example, the north part of Trail Canyon
fan has a lower surface roughness than the rest of the fan. This difference is due to a

different, more easily eroded source material.
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DEM correction (right).

Table 1. AIRSAR inversion model results.

SPM
Surface RM$ f_l

Active Fan C 6.5 2.13 4.0
L 3.6
P 3.0

Desert PvtFan C 2.0 2.18 10.3
L 8.8
P 3.0

Artists Dr. Fan C 1.0 2.405 2.4
L 2.3
P 2.7

Playa C 2.3 2.105 4.8
L 10.9
P 2.5

Devil's Golf Cs. C 19.0 2.03 3.0
L 2.5
P 3.0

MSPM y=2.55 MSPM y=SPM Field
RM$ (t RM$ ¢ RM$
2.7 66.8 2.1 68.4 17.4 3.1
6.7 27.3 5.0 27.3

10.9 4.2 10.3 3.6
1.4 26.9 1.2 25.7 9.8 3.0
2.7 12.3 2.6 10.8

10.7 1.5 6.9 1.4

2.6 46.1 2.6 28.7 11.5 2.8
2.5 10.0 3.4 13.6
9.4 2.1 11.8 4.3
1.5 28.3 1.0 28.3 7.6 5.3
0.9 26.1 0.5 20.8
6.2 3.9 9.9 3.3

NGP NGP NGP NGP 12.0 2.4
12.1 50.7 5.7 27.5
30.3 17.7 28.2 39.4

RMS = root mean square surface roughness in cm
fd = fractal dimension
e ---dielectric constant

NGP = no good points
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I. INTRODUCTION
The multi-sensor aircraft campaign called the "Geologic Remote Sensing Field

Experiment" (GRSFE), conducted during 1989 in the southwestern United States,
collected multiple airborne remote sensing data sets and associated field and laboratory
measurements (Arvidson et al., 1991). The GRSFE airborne data sets used in this study
include the airborne Synthetic Aperture Radar (AIRSAR), the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS), and the Thermal Infrared Multispectral Scanner fillS)
(See Table 1). Each sensor's unique characteristics were used for this study in a combined

analysis scheme for geologic mapping. AIRSAR was used to map structures and
landforms, AVIRIS was used to map mineralogy, and TIMS was used to map lithology.
Visual data integration using IHS transforms and combined numerical analysis using
derived geophysical and geologic parameters with "multispectral" techniques resulted in
improved geologic mapping over that possible using each data set individually.

TABLE 1.

Sensor

AIRSAR

AVIRIS

_TIMS

GRSFE Sensor Specifications

Wavelength Number of

range channels

Pr L, C bands 3 (Quad pol)

68.13, 23.98 r 5.66 cm

0.41 - 2.45 ktm 224
8.2 - 11.7 lam 6

Sampling Spatial
Interval Resolution

NA 6-12 m

10 nm 20 m

400- 800 nm 20 m

II. LOCATION AND GEOLOGY
The extreme northern end of Death Valley (northern Grapevine Mountains)

California and Nevada, USA, has been studied in detail using field dam and several remote

sensing data sets (Kruse, 1988, Kruse et al., 1993). Bedrock in the area consists of
limestones, dolomites, sandstones and their metamorphic equivalents along with quartz

syenite, a quartz monzonite porphyry stock, and quartz monzonite dikes (Wrucke et al,
1984, Kruse, 1988). The igneous rocks are cut by narrow north-trending mineralized

shear zones and slightly broader northwest-trending zones of disseminated quartz, pyrite,
sericite, chalcopyrite, and fluorite mineralization (QSP alteration) as well as several small
areas of quartz stockwork. Skarn, composed mainly of brown andradite garnet intergrown
with calcite, epidote, and tremolite, occurs around the perimeter of the quartz monzonite
stock. Tertiary volcanic rocks are abundant around the periphery of the study area.
Quaternary deposits include Holocene and Pleistocene fangiomerates, pediment gravels,
and alluvium.

III. AIRSAR DATA
The JPL P-, L-, and C-band airborne imaging radar polarimeter data (AIRSAR)

were calibrated using Trihedral comer reflectors placed during the GRSFE experiment.
The comer reflectors were not physically in the northern Grapevine Mountains scene, but
in an adjacent scene in the same flightline. Calibration consisted of calibration of phase,
cross-talk, co-channel imbalance, and absolute radiometry using software developed at JPL
(van Zyl et al., 1992).

The AIRSAR data were converted to radar backscattering coefficient (a °) to

allow extraction of backscatter signatures for areas indicated as having varying surface
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roughnessonaPLC(RGB)colorcompositeimage.Selectedbackscattersignaturesfrom
thenortbernGrapevineMountainssiteareshowninFigure1.Thebackscattersignatures
showthatingeneralthoserocksandfansthatcontainalteredmaterialaresmootherthan
thosethatdonot.Thisestablishesalinkbetweensurfacemorphologyandcomposition
fortheseparticularunits.Somefansofdifferingcomposition(volcanicfansandmixed
compositiongraniticfans)withsimilarspatialrelationstounalteredbedrock,however,
havesimilarbackscattersignatures.Arockfaceperpendiculartothelookdirectionofthe
AIRSARacts,asexpected,nearlyasacomerreflector.

Figure1. Radarbackscattersignatures (o °) for selected rock units.

0 j _L ROUGH
C-BAND L ;AND

-- " P-BAND

_ Z

i -20 z

o
-j

o

•.30_ ROCK FACE -__,..._

PROXIMAL FAN i

er
VOLCANIC FAN

"40 MIXED COMPOSITION GRANrTIC FAN

FAN FROM ALTERED AREA

ALTERED QI"Z MONZOMTE PORPHYRY
-50 , SMOOTH

0 2o 4o 6o 80
WAVELENGTH (cm)

The AIRSAR data were also inverted to rms surface roughness and fractal
dimension using a first-order small perturbation model (Kierein-Young, 1993). The
surface roughness was calculated from the intercept of a log-log plot of the power spectral
density for the PLC data and the fractal dimension from the slope. The distribution of
smooth versus rough areas generally corresponded to that observed during the interactive
extraction of frequency signatures above. Again, the altered areas were shown to be
relatively smooth. Density sliced images of the rms roughness, however, allowed
quantitative spatial mapping of several ranges of roughness.

IV. AVIRIS DATA

AVIRIS is an imaging spectrometer measuring reflected light in 224 narrow (10
m-wide) bands between approximately 0.4 -2.45 I.tm (Porter and Enmark, 1987).
Numerous studies have used these data for mineralogic identification and mapping based

on the presence of diagnostic spectral features. Field spectra of known targets (one lighL
one dark) were used to calibrate the AVIRIS data to reflectance with the empirical line

method (Kruse et al., 1993). Spectral signatures were extracted using interactive display
and analysis software allowing identification of individual minerals and mineral mixtures
(Kruse et al., 1993). An expert system was used to identify spectral endmembers and

linear spectral unmixing was used to produce quantitative image-maps showing their
spatial distribution. Thematic mineral maps provide detailed surface compositional
information regarding secondary minerals (alteration and weathering). The results
illustrate the fracture-controlled nature of most of the alteration.

V. TIMS DATA

TIMS is an aircraft scanner measuring six channels in the 8-12 lam range
(Palluconi and Meeks, 1985). Silicate minerals have diagnostic emissivity minima in
this spectral region (Lyon, 1965). TIMS data acquired at 13:22 local time were calibrated

to radiance using gain and offset values for every scanline calculated using Planck's
radiation law with the TIMS internal reference values and channel spectral responses. "Ihe
radiance values were next converted to emissivity using the "model emittance" or "black

body" technique described by Kahle (1987), assuming that the emissivity in TIMS band 6
was equal to 0.93. No atmospheric correction was made, however, examination of

individual TIMS spectra, indicates that the emissivity calibration was adequate without
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the allnospheric correction, probably because of the extremely arid nature of the study
are_

Color composites were made from the calibrated TIMS bands and emissivity

spectra were extracted from the calibrated data for areas with known rock compositions.
The principal feature of these spectra is the presence of a subtle emissivity minimum in
TIMS band 3 (9.18 lam) caused by the fundamental silicon-oxygen stretching vibrations
of quartz and other silicate minerals. Although the emissivity features are subdued in the
TIMS spectra, the shift in the minimum from TIMS band 3 to TIMS band 4 associated
with decreased silica content can be observed for several silica-poor rock units. When 4/3,

5/4, and 3/2 (RGB) emissivity ratios are used together in a color-ratio-composite image,
the silica-rich areas are obvious red areas on the image, while the areas with less silica

appear green to blue-green. The designed ratios and image colors were used to produce

lithological maps.

VI. IMAGE INTEGRATION FOR VISUAL INTERPRETATION

All of the data sets were co-registered to a map base using a DEM.
Combinations of the diverse data sets were then made using the Intensity, Hue, Saturation

(IHS) transform (Gillespie et al., 1986). In this procedure, the color image to be overlain
is transformed from the RGB coordinate system into the IHS system, the intensity is

replaced by a single-band base image, and the new IHS coordinates are transformed back to
RGB. This preserves the colors from the original color image while allowing use of the
base image to modulate the brightness. Several image combinations were made that
enhanced the usefulness of the data for geologic mapping. The geology and alteration
maps produced in the field were overlain on the radar data. These images allowed
verification of the field mapping. Additionally, the alteration overlay on the radar data
showed previously unrecognized structural control of alteration. TIMS data overlain on
L-band AIRSAR showed additional associations of lithology and structure. The most

useful image utilizing combined radar and optical remote sensing, however, was the
combination of the P-, L-, C-band (RGB) image with the AVIRIS mapping results.

These images and the o ° signatures show that roughness information is linked to
composition obtained from the optical remote sensing. For example, the areas that
appear smooth at P- and L-band and rough at C-band are judged to have 5 cm-scale surface

relief. The AVIRIS analysis indicates that these areas also have abundant alteration
minerals (sericite). One interpretation of these associations might be that the altered areas
have reduced the surface relief relative to surrounding rocks. This is supported by field
work, which shows that these areas correspond to highly altered rocks that have been

weathered to a desert-pavement-like surface.

VII. COMBINED ANALYSIS OF DERIVED DATA SETS
The coregistered derivative data sets were combined into a "data cube" for

statistical and multispectral analysis. Derived data sets used included surface roughness
and ffactal dimension from the AIRSAR data, mineral abundance images from the

AVIRIS data, and emissivity ratio images from the TIMS data. "Spectral" and supervised
classification methods were used on the combined data set to produce image maps

showing broad geomorphic units with common roughness, lithological, and alteration
characteristics. These images support the previous link between surface roughness and
composition while providing spatial maps showing the associations and distribution.

VIII. CONCLUSIONS

The integrated multispectral images are providing new geologic information that
can be used for lithologic and structural mapping to assist development of geologic
models. The AIRSAR data provide information about the surface morphology of rocks
and soils and the scale of surface roughness. They allow definition of geomorphic units
which indicate that there is a link between surface morphology and composition for some
units. The AVIRIS data allowed direct compositional mapping of surface mineralogy.
The TIMS extended spectral signatures provide compositional information not contained
in the visible, near-infrared or short wave infrared data. The TIMS spectra and images
were useful for mapping lithoiogical differences between igneous rock types because

31



TIMS is particularly sensitive to silica content. They also showed several areas of very
high silica concentrations corresponding to silicified (altered) outcrop. The integrated
multispectral images provide a case study of the characteristics of these diverse data sets

and their capabilities for geologic mapping. The combined analyses of these data
demonstrates that improved lithological, mineralogical, and structural mapping is
possible using remote sensing, even where extensive, detailed ground mapping has been
completed.

The next step in this study is to use the GRSFE and other data sets to extend the
analysis to a regional scale. Extension of the study area to include much of the northern
Death Valley region is in progress. SIR-C data will be used in conjunction with AVIRIS
and TIMS to produce detailed geologic maps that will allow development of regional
geologic models for the evolution of igneous, metamorphic, and sedimentary rocks and
recent geologic surfaces.
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1. INTRODUC'FION

The intensity and amplitude statistics of SAR images, such as L-Band HH for
SEASAT and SIR-B, and C-Band VV for ERS-l have been extensively investigated

for various terrain, ground cover and ocean surfaces. Less well-known are the
statistics between multiple channels of polarimetric or interferometric SARs,

especially for the multi-look processed data. In this paper, we investigate the

probability density functions (PDFs) of phase differences, the magnitude of complex

products and the amplitude ratios, between polarization channels (i.e. HH,HV, and

VV) using l-look and 4-look A1RSAR polarimetric data. Measured histograms are

compared with theoretical PDFs which were recently derived based on a complex

Gaussian model (Lee et al., 1993).

NASA/JPL l-look and 4-look AIRSAR data of Howland Forest and San
Francisco were used for comparison. Histograms from l-look SAR data agreed with

theoretical PDFs. However, discrepancies were found when matching the 4-look

polarimetric data with the 4-look PDFs. Instead, We found that the 3-look PDFs
matched better. The problem was traced to the averaging of correlated 1 -look pixels.
We also verified these theoretical PDFs for forest, ocean surfaces, park areas and city

blocks. This indicates that ground cover and terrain with different scattering

mechanisms can be represented with this statistical model.

2. THE COMPLEX GAUSSIAN MODEL

A polarimetric radar measures the complete scattering matrix S of a medium

at a given incidence angle. For a reciprocal medium, the three unique complex

elements are Shh, Sh,,, and S_,. Circular Gaussian Conditions (Goodman, 1985) are
assumed. The circular Gaussian assumption has been verified by Sarabandi(1992)

using l-look polarimetric SAR data.

The multi-look AIRSAR processor compresses polarimetric data by averaging

Mueller matrices of I-look pixels in the azimuth direction. Due to oversampling, the

neighboring 1-look pixels of AIRSAR data are somewhat correlated. For mathematical

simplicity, the PDFs for multi-look phase difference, etc. were derived under the

assumption of statistical independence.

3. MULTI-LOOK PHASE DIFFERENCE DISTRIBUTION

Let n be the number of looks, and Sz(k) and S2(k) be the kth l-look samples

of any two components of the scattering matrix. For polarimetric and interferometric

radars, the multi-look phase difference is obtained by
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n
1

=Arg[ n _[_ S, (k) S; (k) ] (Z)
k=l

Under the circular Gaussian assumption, the multi-look phase distribution

were derived by multiple integrations of special functions (Lee et al., 1993). The
multi-look phase difference PDF is

p(@) = F(n+i/2) (m-lpcl=)n13+ (m-]Pcl=)n
2vl-_ F(n) (1-[32) n'I/2 2re

F(n, i; 1/2; 132)(2)

with

13 = IPcl cos(_-O), -=<,1,<= (3)

where F(n, 1; I/2; f12) is a Gauss hypergeometric function, and 0 and Ipcl are the phase
and the magnitude of the complex correlation coefficient defined as

E[SzS2]
P_= =lpcle i° (4)

(EtlS_I2]EtlS=I =]

The l-look (n=l) PDF can be obtained by applying mathematical identities of
the hypergeometrical function (Lee et al., 1993). The l-look PDF obtained is identical

to that of Kong (1988) and Sarabandi (1992). The PDF of Eq. (2) depends only on the
number of looks and the complex correlation coefficient. The peak of the distribution

is located at _b=8. A plot of standard deviation versus IpJ is given in Fig. 1, which
verifies a similar but less accurate figure (Zebker, 1992) computed with

interferometric radar data. As shown in Fig. 1, multi-look processing effectively
reduces the phase error, especially when n=16 and 32.

4. DISTRIBUTION OF THE MAG NITU DE OF THE NORMALIZ ED MULTI- LOOK
COMPLEX PRODUCT

The magnitude of product of S 1 and S 2 is an important measure in
polarimetric SAR, and it is the magnitude of interferogram from an interferometric
SAR. The normalized magnitude is defined as

n

1! r, (k)s;(k>l
/2 k=l

_/E[IS_r "_] E[ IS212]

(s)

The PDF of _ (Lee et a1.,1993) is

p (F.) 4 r2n+z_ n 2 Ip_In_ 2n_= Io ( ) Kn_ 1 ( ) (6)
r(.) i-I , I 1-1pcl=

where Io( ) and Kn( ) are modified Bessel functions. The PDF for the unnormalized

magnitude can be easily obtained from Eq.(6) by using Eq. (5). The standard
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deviationsof thisPDFisplottedversusthecorrelationcoefficientin Fig.2. Thisplot
indicatesthat the magnitudeof complexproductcanbe usedasa discriminator,
especiallyfor largen.

5. MULTI-LOOK AMPLITUDE RATIO DISTRIBUTIONS

The amplitude ratio between Shh and Sv,, has been an important discriminator

in the study ofpolarimetric radar returns• Let the normalized ratio

n n

(_ ls_(k) !_/E[IS_12])/ (_ Is2(k)12/E[Is21_])
k=l k=l

(7)

The multi-look amplitude ratio PDF (Lee et al., 1993) is

p(v) 2F(2n) (i-[_c12) n (l +v2 ) v2n-i= , 0 _v<oo (8)

F(n) F(n) [(l-v2)2-4]Pc12V2] n+I/2

For n=l, we have the l-look amplitude distribution, which is identical to the results

of Kong(1988), when his PDF is properly normalized.
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6. COMPARISON OF THEORETICAL PDFs WITH AIRSAR MEASUREMEN'IS

In this section, the A1RSAR polarimetric data was used to compute histograms

of phase differences, normalized products and amplitude ratios to verify this complex
Gaussian model• Homogeneous regions of forest were selected, and the complex

correlation coefficient (i.e., 0 and IpJ) and histograms were computed. We have
checked the 1 -look C-Band and L-Band data, and found that the agreements between

histograms and their corresponding PDFs are good. However, discrepancies exist in
the 4-look data. Using 4-look Howland Forest data (CM1084), the match between the

histogram and the 4-look phase difference PDF are not as good (Fig. 3A). A better
match was found with a 3-look PDF (Fig. 3B). Histograms of amplitude and

normalized product are also shown good agreements with 3-look PDFs. To save space,

only the case of HH to VV ratio is shown in Fig. 3C.
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Theproblemwas traced to the averaging of correlated l-look neighboring
pixels during the multi-look processing. To verify it, we use l-look data of Howland

Forest (HR1084C) and perform the 4-look processing by averaging four pixels

separated by two pixels in the azimuth direction. Since the correlation between every
other pixels is much less than that between its immediate neighbors, statistical

independence is assured. The results are shown in Fig.4 for all three variables under

study. The agreement with 4-look PDFs is very good. We can conclude that due to

the correlation of l-look data, the 4-look AIRSAR data has the characteristics of a
3-look.
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1. INTRODUCTION

Past co-operation between the NASA Earth science and Applications
Division and the CSIRO and Australian university researchers has led to a number

of mutually beneficial activities. These include the deployment of the C-130

aircraft with TIMS, AIS, and NS001 sensors in Australia in 1985; collaboration
between scientists from the USA and Australia in soils research whcih has

extended for the past decade; and in the development of imaging spectroscopy

where CSIRO and NASA have worked closely together and regularly exchanged

visiting scientists. In may this year TIMS was flown in eastern Australia on board

a CSIRO-owned aircraft together with a CSIRO-designed CO2 laser spectrometer.

The Science Investigation Team for the Shuttle Imaging Radar (SIRC-C)

Program includes one Australian Principal Investigator and ten Australian co-

investigators who will work on nine projects related to studying land and near-

shore surfaces after the Shuttle flight scheduled for April 1994.

This long-term continued joint collaboration was progressed further with

the deployment of AIRSAR downunder in September 1993. During a five week

period, the DC-8 aircraft flew in all Australian states and collected data from some

65 individual test sites (Figure 1).

2. MANAGEMENT

The deployment preparations were directed by a management team

comprising representatives of the CSIRO Office of Space Science Applications

(COSSA); CSIRO Division of Exploration and mining; the University of New

South Wales and the Australian Mining Industry Research Association, with

NASA HQ and COSSA acting as the signatories for the mission.

In April 1993 a five-day Radar Image Processing and Applications

workshop was held in Sydney for the participating investigators. In addition to

presenting a theoretical background to the processing of multi-polarised data sets,

the workshop sought to outline SAR calibration and ground sampling procedures;
evaluate current applications of SAR in geology, vegetation, soils and soil moisture

and sea-state investigations; examine the interferometric mode of SAR for surface

mapping and to provide participants with hands on experience in basic image

processing of radar data. Guest speakers and workshop leaders included Craig

Dobson from the University of Michigan, Anthony Freeman from JPL and Fred

Kruse from the University of Colorado.
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Duringthedeploymentdatawasacquiredfor:

i) NASA/Australiancollaborativeprojects;

ii) SIR-Ccalibrationinvestigations;

iii) specificCSIRO-basedresearchprograms;and

iv) aseriesof individualinvestigationsforgovernmentagenciesand
privatesectorsponsors.

Towardstheendof 1994anevaluationworkshopwill beheldtodiscuss
theresultsof themissionandallowindividualinvestigatorstopresenttheir
findings.

3. SCIENCE OBJECTIVES

Radar remote sensing technology is comparatively untried, unresearched

and unproven in Australian terrains. SIR-A and SIR-B data in the early 1980's

did provide limited opportunities to investigate and map selected geological and
vegetational patterns (Richards et al. 1987).

One of the major objectives of this deployment is to determine the
contribution of AIRSAR and TOPSAR datasets to landform determination and

structural mapping in regolith dominated terrains. One CSIRO research project

sponsored by mineral exploration companies has the following aims:

i) To differentiate surficial regolith materials on the basis of their surface

roughness and dielectric characteristics, especially weathered rock outcrop,
lag gravels, soils and vegetation in both mafic and felsic terrains, and to

quantitatively analyse the radar frequency information and the polarimetric

signatures that describe each land component. Information describing

these surface variables should allow recognition of the three fundamental
regimes of a weathered landscape, that is residual, erosional and

depositional. It is anticipated that the processed radar data will provide

significant information concerning the degree of weathering, wind and/or

water erosion processes, and on interpretation of patterns of sedimcntation

and relative disposition within the dispositional units;

ii)

iii)

To display subtle geomorphological features (micro-relief) involving relief

escarpments, drainage and various landforms which may be surface

indicators of subsurface geological structures of exploration significance;

To investigate the capability of polarimetric radar data to map sub-surface

geometries and subtle hidden structures in areas of thinly-covered, gcntly
dipping strata;

iv) To determine the optimum viewing and imaging parameters for future use

of satellite and airborne radars for regolith-landform and geological
mapping in the Australian semi-arid and arid zones; and

v) To generate high resolution digital elevation models of the study areas
using TOPSAR radar interferometry. The models will be used to

geometrically rectify the AIRSAR polarimetric and ERS-1 SAR data

respectively and to assist definition of landform regimes, regolith

characteristics, sources of materials and local regolith stratigraphy. These

topographic datasets will be registered to other remotely-sensed,
geological, geophysical and geochemical datasets and used for fault
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mappingandidentification,terrainanalysisandterrainprocessesanalysis,
andestablishinggeochemicaldispersionprocessesandpatterns.

Anothermajorobjectiveincludesinvestigatingtheuseof radarfor
vegetationmappingin forests,woodlandsandrangelandenvironmentsandfor
testingmodelsdevelopedtoaccountforthefull interactionof backscatterfrom
differenttreemorphologiesoverdiffuseground.A numberof investigationsare
centredin theNorthernTerritoryextendingalongatransectfromnearDarwinin
thenorthtoKatherinein thesouth.Thistransectprovidesaclimatically
determinedgradientwhichbringsatransitionfromwetlands,tropicalforestsand
woodlands,savannagrasslandtosemi-aridanddeserts.Theaccurate
discriminationof thesebiomesandtheirboundaryeffectsareseenascrucialtothe
spatialmodellingof ecosystemsatbothalocalandaglobalscale.

Landdegradationprocessesassociatedwithsalinityandaltered
groundwaterconditionswill bestudiedinanumberof sitesthroughoutAustralia.
Onesite,KeranginCentralVictoria,willbeusedasamajorcalibrationsitefor
theforthcomingSIR-Cmissionaswellasforhydrogeology.

A jointNASA/Australiaprojectin theGreatSandyDesertregionof
WesternAustraliawill usebothAIRSARandTOPSARdatafordetailed
reconstructionof Australia'spalaeoclimateandpalaeohydrologyduringtheLate
Quaternaryperiod.It isanticipatedthatthesedatasetswill assistin:

* mapping ancient shoreline ridges defining the extent and height of former

lakes;

* mapping lacustrine units and distinct flood sedimentation units such as

slackwater deposits; and

* identifying levee systems of prior streams and the presence of strandline

deposits within dunal corridors.

TOPSAR will be crucial for determining local slope, reconstructing the drainage

network and modelling flood estimation and extent, surfrace run-off and landform

development.

4. CONCLUSIONS

The Australia deployment has provided a core group of Australian researchers an

exciting opportunity to exploit the unique capabilities of both AIRSAR and
TOPSAR datasets. The benefits of radar remote sensing technology to earth

system sciences now depends on the regular availability of these precision datasets

from operational spaceborne systems.

5. REFERENCES

Richards, J.A., B.C. Forster, A.K. Milne, J.C. Trinder, and G.R. Taylor, 1987,

"Australian multi-experimental assessment of SIR-B (AMAS). Final Report to

NASA and JPL, March 1987," pp. 11 plus appendices.

39



N

"_ _!-i_ _

Bep 'apn I e I

0

0

<

0

0 .-

,J

o.
o E

<

o

<

0

o__
0

b_

0

0

_J

<

E
o

E

40



N95- 23949

CURRENT AND FUTURE USE OF TOPSAR DIGITAL TOPOGRAPHIC DATA FOR
VOLCANOLOGICAL RESEARCH

Peter J. Mouginis-Mark, Scott K. Rowland and Harold Garbeil

Planetary Geosciences
Department Geology and Geophysics, SOEST

University of Hawaii
Honolulu, Hawaii 96822

Introduction

In several investigations of volcanoes, high quality digital elevation models (DEMs) are
required to study either the geometry of the volcano or to investigate temporal changes in relief
due to eruptions. Examples include the analysis of volume changes of a volcanic dome (Fink et
al., 1990), the prediction of flow paths for pyroclastic flows (Malin and Sheridan, 1982), and the
quantitative investigation of the geometry of valleys carved by volcanic mudflows (Rodolfo and
Arguden, 1991). Additionally, to provide input data for models of lava flow emplacement,
accurate measurements are needed of the thickness of lava flows as a function of distance from

the vent and local slope (Fink and Zimbelman, 1986). Visualization of volcano morphology is
also aided by the ability to view a DEM from oblique perspectives (Duffield et al., 1993).

Until recently, the generation of these DEMs has required either high resolution stereo air
photographs or extensive field surveying using the Global Positioning System (GPS) and other
field techniques. Through the use of data collected by the NASA/JPL TOPSAR system, it is
now possible to remotely measure the topography of volcanoes using airborne radar
interferometry (Zebker et al., 1992). TOPSAR data can be collected day or night under any
weather conditions, thereby avoiding the problems associated with the derivation of DEMs from
air photographs that may often contain clouds. Here we describe some of our initial work on
volcanoes using TOPSAR data for Mt. Hekla (Iceland) and Vesuvius (Italy). We also outline
various TOPSAR topographic studies of volcanoes in the Galapagos and Hawaii that will be
conducted in the near future, describe how TOPSAR complements the volcanology

investigations to be conducted with orbital radars (SIR-C/X-SAR, JERS-1 and ERS-1), and place
these studies into the broader context of NASA's Global Change Program.

TOPSAR
The TOPSAR instrument is a C-band (5.6 cm wavelength) radar flown on board a NASA

DC-8 aircraft (Zebker et al., 1992; Evans et al., 1992). Topographic data collected by TOPSAR
have a spatial resolution of 5 to 10 m, with a vertical accuracy of 1 to 5 m depending upon the
relief of the target -- smoother surfaces (i.e., at the pixel-scale, those surfaces that have a
uniform relief) will have lower height errors than mountainous areas because of the greater
uncertainty in characterizing an inhomogeneous pixel with a single height value. TOPSAR
swaths are 30 km x 6.4 km in size. These topographic data are acquired concurrently with radar

backscatter images at C-band, L-band (24 cm) and P-band (68 cm), which enable surface textures
and structure to be investigated in a manner comparable to conventional radar analyses of
volcanoes (e.g., Gaddis et al., 1989, 1990; Campbell et al., 1989).

TOPSAR measurements differ significantly from DEMs derived from the interpolation of
digitized contour maps. In TOPSAR data sets, a height measurement is made at each pixel and
therefore the TOPSAR DEM provides a truer representation of the surface relief. We note,
however, that in its current configuration TOPSAR does not have any absolute geodetic control,
so that each TOPSAR scene must be referenced to a geodetic grid before absolute elevations and
regional slopes (i.e., those slopes measured along or across the entire swath) can be resolved.
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Mt. Hekla and Vesuvius

We illustrate the use of TOPSAR data for volcanological research with examples derived
from data collected over Mt. Hekla (Iceland) and Vesuvius (Italy) in the summer of 1991.

For Hekla volcano, the thickness of lava flows can be measured from TOPSAR data (Fig.
1), and these thickness measurements can be used with existing numerical models of lava
rheology to infer yield strengths of 5000 to 30,000 Pa. (Rowland et al., 1992), comparable to
lavas of similar composition (basaltic andesite) elsewhere. In all cases, the calculated yield
strength of a flow increases with distance from the vent (reflecting the greater amount of cooling
of the furthest-traveled lava), although average flow thickness remains fairly constant. TOPSAR
data also permit the geometry of a moberg ridge (which is a volcanic feature formed by a sub-
glacial eruption) to be determined (Fig. 2). Although only a few examples of moberg ridges
around Hekla were imaged by TOPSAR, it would be possible to use TOPSAR to measure the
volume of many ridges, thereby enabling the amount of lava erupted from different vents to be
determined (Evans et al., 1992).

TOPSAR data for Vesuvius, Italy,
permit the geometry of the volcano
flanks to be determined (Mouginis-Mark
and Garbeil, 1993). There is a large
number of valleys on the flanks of the
older portion (Mt. Somma) of Vesuvius.
These valleys are primarily water-carved
in origin, but they have also been used as
pathways for pyroclastic flows.
TOPSAR enables a slope map of the
flanks to be derived, and valley
geometry to be measured. Slope maps
can provide valuable input when
examining the likelihood that different
areas will be affected by volcanic
hazards such as pyroclastic flows, lava
flows, and lahars. We have found the

slopes of the flanks of Mt. Somma to be
typically -13 - 24 ° at lower elevations,
-25 - 36 ° closer to the rim, with a
maximum value of > 48 ° on the inner
walls of the craters.
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Fig. 1: TOPSAR profiles across and along a
single lava flow erupted from Mt. Hekla, Iceland.
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Fig. 2: 3 profiles across a single moberg ridge close to Mt. Hekla, Iceland, derived from
TOPSAR data. Length of moberg ridge perpendicular to these profiles is -3800 m.
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Profiles down the length of individuals valleys (Fig. 3a) can also be determined.

Potentially, it may be possible to use TOPSAR data to recognize different lithologic units (either
different in the mechanical properties or absolute age) by this method, since the degree of erosion

of materials on a given slope should vary as a function of strength and/or age. In order to explore
the physical basis for these relationships, a more rigorous study would be required to identify and
evaluate the possible significant variables (e.g., Knighton, 1974). The profiles across a valley at
different distances from the rim of Mt. Somma (Fig. 3b) also show that the geometry of the

valley varies from one place to another. From our morphologic data, there appears to be a trend
towards proportionally deeper valleys with increasing slope. In general, for each valley, on
slopes > 30 ° depth can be twice that on slopes < 10 °. This may be interpreted to be an indication
of the lower erosive action of the flows (either debris flows or running water) on the lower slopes

than on steep slopes, or of deposition on the lower slopes.
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Fig. 3a (Left, at top): Profiles for
individual valleys on the flanks of Mt.
Somma. Fig. 3b (left, at bottom)
Cross-sections through a single valley
on flanks of Mt. Somma, as

determined from TOPSAR data. Only

a few representative cross-sections are
shown, but the original data were
obtained at every 250 m down the
flanks.
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Future TOPSAR data sets

To date, only a few TOPSAR data
sets have been collected over

volcanoes; the most useful are the data
for the western Galapagos Islands.
These volcanoes constitute one of the

Space Shuttle Radar (SIR-C/X-SAR)
"Super-Sites", and are also one of the
targets for the JERS-1 Verification
Program. Use of the TOPSAR DEM,
as well as the AIRSAR multi-

wavelength backscatter images and the
JERS-1 SAR data, will therefore aid in

the analysis of these orbital data sets.

Several structural and volcanological investigations of the Galapagos volcanoes have been

conducted using air photographs (Chadwick and Howard, 1991) and satellite images (Munro and

Mouginis-Mark, 1990; Rowland and Munro, 1992), but the detailed topography of the islands is
poorly known. Fernandina and Isabela Islands were imaged in May 1993 by TOPSAR, but at the
time of writing the analysis of these data has not been initiated. The use of TOPSAR data to

investigate the spatial distribution of rift zones through the generation of slope maps, the
measurement of lava flow thickness on different slopes, and the calculation of volumes of cinder
cones and summit calderas, should all significantly improve our knowledge of these infrequently
visited volcanoes.

Two TOPSAR deployments over Kilauea Volcano, Hawaii, are planned for September and
October 1993. These flights will enable the derivation of a "topographic difference map", which
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shouldpermit the quantitativemeasurementof the volume of new lava eruptedduring the
interveningmonth. This will allow anaverageeffusionratefor thevolcanoto bedetermined,as
well asfacilitate the studyof the growthof acompoundlava flow field. Finally, aspart of the
DecadesVolcano program (Bennett et al., 1992), planning is under way for a TOPSAR
deploymentto SantaMaria Volcano,Guatemala,aswell asthecollectionof ERS-1orbitalSAR
datafrom the temporarygroundreceivingstationin Atlanta,USA. Sometimein thefuture we
hope to use TOPSAR to aid the analysisof the Santiaguitolava dome, and help with the
productionof newhazardmapsthroughtheconstructionof detailedtopographicmaps.
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Introduction

Synthetic Aperture Radar (SAR) images

acquired from various sources such as Shuttle

Imaging Radar B (SIR-B) and airborne SAR (AIRSAR)

have been analyzed for signatures of soil moisture

(Dobson et al., 1986, Wang et al., 1986, Rao et

al., 1992). The SIR-B measurements have shown a

strong correlation between measurements of surface

soil moisture (0-5 cm) and the radar

backscattering coefficient ,o, (Wang et al.,

1986). The AIRSAR measurements, however, indicated

a lower sensitivity (Rao et al., 1992). In this

study, an attempt has been made to investigate the

causes for this reduced sensitivity.

Measurements

Polarimetric AIRSAR data were acquired over

the Little Washita watershed near Chickasha,

Oklahoma during June 10-18, 1992. A total of 8

days of flights were made during this period.

There was a series of heavy rainfall prior to June

i0. No rainfall was reported between June i0 and

18. Soil moisture samples in the top 5 cm layer

were collected at a number of fields during the

time of the flights. The average soil moisture was

-0.26 gm/cm 3 on the first day of flight (June I0)

and "0.13 gm/cm 3 on the last day of flight (June

18).

Two areas covered by the AIRSAR flights were

selected for the study, one southwest of the

watershed (site i), and the other northeast of the

watershed (site 2). Three sets of images (C, L,

and P-bands) for the two areas, acquired on three

different dates, June i0, 14, and 18, were

analyzed. In order to obtain a broader perspective

on the sensitivity of the SAR images to soil

moisture variations, a finite strip of 200 pixels

in the cross track and 1024 pixels in the along

track directions were chosen from each image. The
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strips from each scene were chosen such that they

cover approximately the same area on the ground.

Results

The results from the analysis for site 1 are

shown in Figures 1 and 2. Each data point in these

figures represents an average of 200 pixels in the

cross track and 8 pixels in the along track

directions. Averaging was performed to reduce the

effect of speckle and noise.

Figures 1 and 2 indicate the variations of

ahh O, at all three frequencies, for the June I0
aH_ 18 images. These figures show that (i) the

average value of ahh ° changed only by about 1 dB,
2.5 dB, and 3 dB, _or C, L, and P-bands,

respectively from June i0 to 18. whereas soil

moisture changed by ~0.13 gm/cm 3 during the same

period; and (2) amplitude variations within the

strips are much higher in comparison (on the order

of 5-8 dB). Since soil moisture is not expected to

differ by a significant amount within a strip, the
wide amplitude fluctuations indicate that the

radar backscatter of the AIRSAR images is

sensitive to other surface features. The general

pattern of the amplitude variations of ahh ° is the
same for both the June I0 and 18 images, which

suggests that these variations are caused by

surface features which did not change from June i0

to 18. However, at this point, it is not clear

which surface feature/features are causing these

variations. Comparison of responses of the three

frequencies shows that P-band has the highest

variation (standard deviation of " 2.2) and C-band

the lowest (standard deviation of 0.6).

Images of site 2 were also analyzed to

determine if they indicate similar trends.

However, a disturbing feature was observed in the

C-band images. Figures 3 and 4 indicate the

variations of a ° values for C-band, for June i0

and 18, respectively. These figures show that,

while ahh ° is higher than avv ° on June I0, avv ° is
higher _Han ahh ° on June 18. This pattern was not

noticed in the case of L and P-bands. This feature

is probably caused by an error in the calibration

procedure; therefore, these images were not used

for the analysis.

Conclusions

An attempt was made to examine the causes for

the lower sensitivity of AIRSAR images to soil
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moisture variations in comparison with that of
SIR-B images. Based on the results obtained, it
can be inferred that a° values are less sensitive
to soil moisture than to other surface features.
Further analysis of these images is required to
identify those surface features which predominate
the radar backscatter in the case of AIRSAR.

Some of the C-band images indicated a change
in the dominant polarization with time. This
change is not expected to occur over a typical
agricultural area and could be due to a potential
problem in the calibration.
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1. INTRODUCTION

In June 1991, the NASA/Jet Propulsion Laboratory airborne synthetic-aperture radar

(AIRSAR) instrument collected the first calibrated data set of multifrequency, polarimetric,

radar observations of the Greenland ice sheet (Rignot et al., 1993). At the time of the AIRSAR

overflight, ground teams recorded the snow and firn (old snow) stratigraphy, grain size, density,

and temperature (Jezek and Gogineni, 1992) at ice camps ill three of tile four snow zones iden-

tified by glaciologists to characterize four different degrees of summer melting of tile Greenland

ice sheet (Benson, 1962). Tile four snow zones are: 1) the dry-snow zone, at high elevation,

where melting rarely occurs; 2) the percolation zone, where summer melting generates water

that percolates down through the cold, porous, dry snow and then refreezes in place to form

massive layers and pipes of solid ice; 3) the soaked-snow zone where melting saturates the snow

with liquid water and forms standing lakes; and 4) the ablation zone, at the lowest elevations,

where melting is vigorous enough to remove the seasonal snow cove," and ablate the glacier ice.

There is interest in mapping the spatial extent and temporal variability of these different snow

zones repeatedly by using remote sensing techniques. The objectives of the 1991 experiment

were to study changes in radar scattering properties across the different melting zones of tile

Greenland ice sheet, and relate the radar properties of the ice sheet to tile snow and firn physical

properties via relevant scattering mechanisms, llere, we present an analysis of the unusual radar

echoes measured from the percolation zone.

2. EXPERIMENTAL RESULTS

Figure 1 shows average values of the radar reflectivity o'_ L (i.e., receiving right-circular

polarized signals and transmitting left-circular polarized signals) obtained by averaging the

radar measurements recorded by AIRSAR at the Crawford Point site in the percolation zone

along the flight path as a function of the incidence angle of the radar illumination O. At 5.6

and 24 cm, a_t L is higher than unity at 18 °, and decreases toward higher incidence angles. At

68 cm, cr°RL is ten times lower, and shows kilometer-scale spatial variations. Figure 1 also shows
0 0 0 0

the circular polarization ratio, pc = ffFtR/O'RL, and the linear polarization ratio PL = O'ItV/OHft

obtained at the Crawford Point site. These ratios of echo power in orthogonal senses are defined

to be equal to zero for specular backreflection from a perfectly smooth dielectric surface, pc is

larger than unity at 5.6 and 24 cm for incidence angles larger than 30 ° and 45 °, respectively,

increasing to 1.6 and 1.4 at 66 ° . At 68 cm, #c is everywhere less than 0.8 and drops as low

as 0.1 in some places, with kilometer-scale spatial variations negatively correlated with those

observed in the radar reflectivity images. #L is as large as 0.46 at 5.6 cm and 0.22 at 24 cm,

but remains less than 0.1 at 68 cm.

In the AIRSAR scenes of the Swiss camp and the GISP II sites, at all three wavelengths,

O'_L are 10 to 30 times lower than at Crawford Point; pc is less than 0.4, and PL is less than 0.1.

To the best of our knowledge, no natural terrestrial surface other than the Greenland percolation

zone shows strong echoes with Pc > 1 and #L > 0.3 (see Figure 1 caption). However, strong

echoes with large values of tLc and #L have been reported for the icy Galilean satellites since the
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1970's(Ostroet al., 1992).More recently,radarobservationsof the Marsresidualsouthpolar
icecap(Muhlemanet al., 1991),portionsof Titan (Muhlemanet al., 1990),andpolar capson
Mercury(Sladeet al., 1992)haverevealedthat surfaceswith highradarreflectivityand#c > 1
existelsewherein thesolarsystem.Figure1showsthat themeanvaluesof disk-integratedradar
reflectivitiesa_) c and circular and linear polarization ratios pc and/2 L for Europa, Ganymede,

and Callisto at 3.5 and 13 cm resemble those of the percolation zone at 5.6 and 24 cm, and dwarf

the values reported for other terrestrial surfaces. Yet, Greenland's average values at 24 cm are

several tens of a percent lower than at 5.6 cm, and tLc < 1 at 68 cm, indicating a change in the

scattering process at the longer wavelengths, whereas 70-cm estimates of tLc for the icy satellites

apparently exceed unity (Campbell et al., unpublished data). Also, #c for the percolation zone

decreases significantly from 66 ° to 18 °, whereas no such difference has been noticed for the icy

satellites (Ostro et al., 1992); and O'_L is a nmch stronger function of the incidence angle than

in the case of the icy satellites (Ostro et al., 1992).

3. INTERPRETATION

Zwally (1977) suggested that ice inclusions could exl)lain low emissivities measured for the

percolation zone by spaceborne microwave radiometers. Since then, surface-based radio sounding

experiments, and airborne active and passive microwave nmasurements (Swift et al., 1985), have

supported the hypothesis that volume scattering from subsurface ice layers and ice pipes is the

major influence on the radar returns. Recent surface-based radar observations conducted at

Crawford Point (Jezek and Gogineni, 1992) at 5.4 and 2.2 cm provided clear evidence that,

at incidence angles between 10 ° and 70 ° , most of the scattering takes place in the most recent

annual layer of buried ice bodies. Studies of the snow stratigraphy at Crawford Point at the time

of the radar flight indicate that the ice inclusions from the previous summer melt were at 1.8 m

below the surface. Ice layers and ice lenses, a millimeter to a few centimeters thick, extend at

least several tens of centimeters across, parallel to the firn strata. Ice pipes, several centimeters

thick and several tens of centimeters long, are vertically extended masses reminiscent of the

percolation channels that conduct meltwater down through the snow during summer, feeding

ice layers. The fact that radar returns measured at 68 cm are significantly weaker and have lower

polarization ratios than those at 5.6 and 24 cm suggests that the discrete scatterers rest)onsible

for the radar echoes are of typical dimension less than a few tens of centimeters, similar to the

scales of the solid-ice inclusions. The 68-cm echoes probably are dominated by single reflections

from deeply buried layers of denser firn or concentrated ice bodies, whereas the 5.6- and 24-cm

echoes probably are dominated by multiple scattering from the ice layers and pipes in the most

recent annual layer. The relatively sharp decrease in Pc and #c for 0 less than 40 ° perhaps

reveals the presence of a strong, specular reflection from the ice layers at small incidence angles,

which is also suggested by the strong dependence of radar reflectivity on incidence angle. Ice

layers and pipes also form in the soaked zone, but the snow there is so saturated with liquid water

that the radar signals are strongly attenuated, cannot interact with the buried ice formations,

and hence yield echoes with low reflectivities and polarization ratios. In the dry-snow zone, the

snow is dry, cold, porous, clean, and therefore very transparent at microwave fl'equencies, but

does not contain solid-ice scatterers that could interact with the radar signals.

For the satellites, no in-situ measurements exist, but theoretical interpretations favor sub-

surface coherent volume scattering as the source of the radar signatures (Hapke, 1990), a phe-

nomenon also known as weak localization (see van Albada et al., 1990 for a review). Coherent

backscattering can theoretically produce strong echoes with pc > 1 (the helicity of the incident

polarization is preserved through multiple forward scattering) and #L _ 0.5, provided that (i)
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the scatteringheterogeneitiesarecomparableto or larger than tile wavelength(Peters,1992),
and (ii) the relativerefractiveindexof the discrete,wavelength-sizedscatterersis smallerthan
1.6(Mishchenko,1992). As notedby Ostroand Shoemaker(1990),prolongedimpact crater-
ing of the satellitesprobablyhasled to the developmentof regolithssimilar in structureand
particle-sizedistribution to the lunar regolith,but thehigh radartransparencyof icecoml)ared
with that of silicatespermitslongerphotonpath lengths,and higher-orderscattering, tlence
coherentbackscattercandominatethe echoesfrom Europa,Ganymede,and Callisto, but con-

tributes negligibly to hlnar echoes. Similarly, the upper few meters of the Greenland percolation

zone are relatively transparent (unlike the soaked zone) and, unlike the dry-snow zone., contain

an abundance of solid-ice scatterers at least as large as the radar wavelength, with a relative

refractive index of about 1.3, so coherent backscatter also can dominate the echoes there, itow-

ever, the detailed subsurface configurations of the satellite regoliths, where heterogeneities are

the product of meteoroid bombardment, are unlikely to resemble that within the Greenland

percolation zone, where heterogeneities are the 1)roduct of seasonal inciting and freezing.
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Figure 1. Average values of the (A) OC radar reflectivity O'_L , (B) circular polarization
0 0 0 0ratio Pc = aRR/aRL, and (C) linear polarization ratio #L = crHV/CrHtt for the Greenland per-

colation zone obtained by averaging the radar measurements recorded by AIRSAR at Crawford

Point along the flight path, at 5.6 (C-), 24 (L-), and 68 cm wavelength (P-), as a function of

the incidence angle of the radar illumination. Radar backscatter values and polarization ratios

measured from wavelength-sized roughness on a surface of lava (black squares) (J. J. van Zyl, C.

F. Burnette, and T. G. Farr, Geophys. Res. Lett. 18, 1787 (1991)) and from tropical rain forest

(black dots) (A. Freeman, S. Durden, and R. Zimmerman, Proc. of the Int. Geos. Rem. Sens.

Symp., Houston, Texas, May 26-29, IEEE New York Pub., 1686 (1992)) are also shown in the

Figure. The values indicated for the icy satellites Europa (E), Ganymede (G), and Callisto (C)

are disk-integrated average measurements at 3.5 and 13 cm wavelengths (Ostro et al., 1992).
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1. INTRODUCTION

During summer 1991, multi-sensor data were acquired over the Italian test site

"Oltrepb Pavese", an agricultural flat area in Northern Italy. This area has been the
Telespazio pilot test site for experimental activities related to agriculture applications.

The aim of the investigation described in the following paper is to assess the
amount of information contained in the AIRSAR and AVIRIS data, and to evaluate

classification results obtained from each sensor data separately and from the combined

dataset. All classifications are examined by means of the resulting confusion matrices and

Khat coefficients (Congalton et al., 1983). Improvements of the classification results

obtained by using the integrated dataset are finally evaluated.

2. DATA SET DESCRIPTION

AIRSAR data were acquired with flight Nr. 9 i- 118 on June 22 nd. Four tracks of

the area were available. We used the 45-1 track because it was the closest to the area of

the ground truth acquisition. Among the three available bands, P band was not used

because it was highly disturbed by an interference noise pattern.
AVIRIS data were acquired with flight 910719b on July 19 th.

In o_der to obtain info_nation about the ground truth, two "in situ" campaigns

were performed. Due to slight errors in the flight tracks, the images do not exactly match

the field survey area: in fact, about 45% oaly 3fthe SAP, images are covered by ground

truth and this percentage decreases to about 20% in the AVIRIS images.

3. SAR DATA ANALYSIS

3.1. "Per Field" Classification

The discriminant analysis was performed on every combination of the 6 power

"bands" (2 frequencies and 3 polarizations); the conclusions can be summarized: 1) Khat

values range from 0.555 to 0.815 as the number of features per observation is increased;

the optimized choice is the L-VV, C-HH, C-HV combination, which allows a good
classification accuracy (Khat value is 0.805) with a reasonably small amount of data. 2)

Although the results are quite good, problems still arise in the discrimination of alfalfa and
corn from wheat. These problems were not solved even by adding more "bands". 3) The

Khat values obtained are quite optimistic since the same data set was used both for

training and testing.

3.2 "Per Pixel" Classification
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In this case we used all features available for the AIRSAR (that is 6 bands in the

NML classifications and 18 for the polarimetric algorithms).

By the examination of the Table !, we can draw the following conclusions: 1) the

classifiers specifically designed for polarimetric data (Lee et al., 1992; Kong et al., 1987)

do not seem to improve the classification accuracy. This could mean that phase
information is not vital: in fact, the classification accuracies obtained with the NML

classifier are very close to polarimetric ones, but the first uses less information (only the

power features). 2) Speckle filtering is very useful to improve the classification accuracy
as denoted by the 9% gain in the Khat values [(the speckle reduction filters that have been

implemented are adaptive filters (Lee et al., 1991; Frost et al., 1981)].

4. AVIRIS DATA ANALYSIS

4.1. Data Reduction

From the original 224 AVIRIS bands, we selected 131 bet_,een 0.4 pm and 1.75
p.m. The radiance to reflectance reduction was performed by means of the "flat field"

technique (Crowley, 1990). For this work we identified a suitable flat field examining

some sand deposits located near the Po river banks. Although this method is not very
reliable, especially in the short wavelengths, it seems to be the best approach in order to

retrieve the relative ground reflectance, since no information on local atmospheric
parameters (such as aerosols, water vapor, etc.) were available.

We used the reflectance data obtained to draw spectral signatures of agricultural

crops and other targets present in the area (an example is given in Figure 1). The analysis
of the spectra shows a great agreement with experimental ones (Elvidge, 1990; Martin,
1990; Goetz, 1991).

The spectral analysis allowed us to select 14 significative bands that maximized

the differences between crops in the reflectance spectra (see Figure !). We obtained a

further reduction by means of a Principal Components Analysis (Loughiin, 1991; Fung,
1987) performed on these bands; this analysis allowed us to define two combinations of

components [PC2, PC3, PC6 (referred to as "tell ") and PC I, PC2, PC3 (referred to as

"ref2")]. The PC Analysis was also performed on the 14 radiance bands to investigate the

effects of calibration on the classification accuracy.Other two combinations of components
[PC3, PC4, PC5 ("rad 1") and PC 1, PC3, PC4 ("tad2")] were thus provided. In both cases,

the selection was done by visual examination of the single PC images and by the analysis
of the eigenvectors' matrix.

4.2. Data Classification

AVIRIS classifications were performed on the same classes as for SAR data and

in a "per pixer' approach. The features used m the analyses are the PC combinations, both
in reflectance and m radiance values, described above.

The Khat values obtained (see Table 2) are close to the ones given by the AIRSAR "per

pixer' classifications and, though not expected, even the "unsupervised results" are very
good. This could be explained as follows: 1) AVIRaS gives very specific information for
each channel: this allows the classifier to recognize different objects without the need of a

preliminary training. 2) In order to reduce the number of generated classes, the clustered

image was post-processed by merging those clusters that seemed to belong to the same
class.

5. DATA FUSION

5.1. Image Registration

We performed the following operations: 1) slant-to-ground range projection of the
6 AIRSAR power speckle-filtered images; 2) re-sampling of AIRSAR images to match the
AVIRIS pixel spacing; 3) image-to-image registration with a cubic convolution filter.
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Steps! and2wereexecutedtogetherwithanewprojectionalgorithmdeveloped
byTelespaziowhichallowedustoobtainlessthanl pixeiinMeanSquaredErrorafterco-
registration.

5.2. Multi-Sensor Classification

For comparison purposes, we used the same classes as in the AVIRIS and

A1RSAR "per pixel" classifications. The integrated classification was camed out on the

six projected AIRSAR power images and the AVIRIS PC images. Fifteen combinations

were classified using the NML and clustering algorithms
From the Table 3, it is evident that the multi-sensor integration gives good

results: in fact, these values are generally and significantly higher than those achieved by

AIRSAR and AVIRIS separate classifications. The extremely good accuracy obtained by

the integrated data is also demonstrated by the absence of "critical pairs" in the best multi-
sensor confusion matrix. This absence can be justified by noticing that each sensor data

classification was not affected by the same "critical pairs", but f'_ both cases it was very

difficult to discriminate alfalfa from other crops (especially from wheat and corn).

6. CONCLUSIONS

In thi:, work a multi-sensor analysis was carried out; first the separate data sets

were processed and classified, then their integration and the consequent classification were

performed.
The SAR data analysis showed (see Table i) that polarimetric information does

not seem to improve the classification accuracy: in fact, in spite of the great number of

features available, the polarimetric classifiers show a little improvement with respect to

the NML classifier performed on the power images only (speckle reduction techniques

furtherly improve the classification results).

Among the L and C power information, the co-polarizations (HH, VV) seem to be
useful for classes identification, while the HV polarization turned out to be useful in

"critical pairs" discrimination. It also seems that crops classification is more accurate when

using L band.
The great amount of AVIRIS data and its high spectral resolution, which are

surely useful in the characterization of green vegetation, imply two major problems: a)
reduction of the data, b) accurate atmospheric corrections. Many efforts are being devoted

to implement simulation models that will allow us to obtain a more accurate atmospheric
correction.
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1.0 BACKGROUND

Azimuthally traveling waves are seldom well imaged in either synthetic-

aperture radar (SAR) or real-aperture (RAR) images of tile ocean (Alpers et al.,

1981). A polarimetric technique has been investigated (Schuler et al., 1993) which

increases a radar's sensitivity to ocean wave tilting when the waves have a component

of their propagation vector in the azimuthal direction. The technique offers

improvement for polarimetric measurements of azimuthal wave slope spectra. A

modification of this technique involving wave-induced changes of the polarization

signature location offers a means of measuring azimuthal wave spectra for both

polarimetric SAR and RAR. This method senses wave-tilts directly and does not

require knowledge of the microwave modulation transler function.

In the case of RAR images, cross section modulation by ocean waves is

normally attributed to two principal sources, tilt modulation and, hydrodynamic

modulation. The effect of these modulations is described mathematically by a complex

modulation transfer function (MTF). For radar images of ocean waves both of these

modulation sources roll-off to zero in the azimuthal direction. Therefore, complete

two-dimensional k-space wave spectra derived from microwave data are often quite

different than the physical ocean spectra. Evidence will be presented to show that a

new source for backscatter modulations will result when the polarization properties of

the scattering matrix are utilized specifically to sense wave tilts occurring in the

azimuthal direction. The improvement in the fidelity of 2-D wave spectra created

using optimal polarizations was investigated using a RAR ocean imaging model. The

new method was derived from observations made on the properties of ocean

polarization signatures. The new imaging technique reported here utilizes linear co-

polar signature intbrmation to maximize a microwave instrument's sensitivity t_)r

azimuthally traveling waves.

Resolved wave tilts create a modulation of the cell polarization orientation

which, in turn, modulates the backscatter intensity in an image. Critical to the success

of the new techniques is the property that ocean linear co-polar signatures have

regions which are highly sensitive to wave tilts. When an image is processed using a

polarization orientation which maximizes this sensitivity, tilt perturbations due to

azimuthally-trave[ing ocean waves have a large effect on the backscatter intensity.

This polarization orientation modulation acts as a new source-term fl_r the

overall microwave modulation transfer function. The magnitude and phase of this

modulation have been quantitatively evaluated. The determination of the magnitude

was demonstrated by making polarization gratings in P-band SAR images of the

ocean. The polarization modulation transfer function contribution has also been
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evaluated using signatures developed from a theoretical tilted-Bragg model. The

magnitude of the polarization modulation contribution to the MTF is equal to 2-5 for
mid-range incidence angles. The effect is in phase with the tilt-modulation and has a
phase of 90 ° relative to the hydrodynamic term.

2.0 APPLICATION TO WAVE SPECTRAL MEASUREMENTS

A model (Lyzenga, 1988) for the radar imaging of ocean waves has been

modified to include both the amplitude and the phase effects of the new polarization
modulation source term. Results using this model indicate that undesirable effects such

as distortion and spectral-splitting of the actual spectrum may be greatly reduced for
the case of azimuthally traveling waves.

..,.,
E

Z

,q

_-02

e_

z

lIAR MODEL WAVENUMBER SPFX_I'RUM

l [ - L ,

1 i i , .

-02 oo 02

AZIMUTII DIRECTION WAVF2qUMBER - (m "i)

(A)

(B)

'g

i O2

!oo
-0 2

RAR MODEl. WAVENUMBER SPECTRUM

i • t • v

' olo ol2

AZIMUTII DIRECTION WAVENUMBER - (m -_)

Figl(A-B): Conventional Model RAR spectrum (A), and the Model RAR spectrum
modified to include the new polarization term (B). The spectrum of (B) is similar in

shape to the input waveslope spectrum, whereas the spectrum of (A) exhibits spitting
and distortion about the ,I,=0 direction

Figure 1 shows comparisons made between conventional RAR spectra, and

spectra developed with the new polarization modulation term included. Fig. l(A)

shows the conventional RAR waveslope spectra, with the dominant wave (k= lOOm,

significant waveheight h,=3m ) traveling in the azimuthal direction (qb=O°). Severe
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spectral splitting (abnormal four-lobed pattern) and distortion occurs because of the

roll-off of the transfer function as the direction approaches ,1,=0. Fig. I(B) includes a

polarization modulation term of magnitude 3.0 in phase with the tilt modulation, but

having a cos_ dependence. Fig. I(B) indicates that polarization modulation MTF

contributions are capable of compensating tbr distortions in the RAR spectra which

are due to azimuthal roll-off of the modulation transfer function.

3.0 POLARIMETRIC SIGNATURE MODULATION

A JPL AIRSAR image (20 July 1988) of azimuthally traveling Pacific swell

occurring off the coast of San Francisco was used to apply the new techniques to SAR

images rather than RAR images, or models. The wave-induced intensity modulations

in this image were strong and essentially uni-directional. The modulations were likely

produced by velocity-bunching effects. A first attempt to enhance the wave

modulations by changing the linear polarization through a range of values did not

produce any significant changes. This was probably due to the strength of the

velocity-bunching effects and a rmsmatch in phases between this effect and the

polarization modulation. The original technique was then modified to detect changes in

location of the polarization signature rather than intensity modulations. A strip image

parallel to the azimuthal direction was tbrmed which had pixel averaging (20) in the

range direction and (2) in the azimuthal direction. Polarization signatures were tbrmed

tbr 350 cells formed parallel to the direction of wave propagation. Gates were set at

the peak at other points in the signature to sense wave-induced movement parallel to

the Orientation axis of the signature. Fig 2 shows a power waveslope spectrum of the

strip, this SAR wave spectrum shows a strong peak at a wavenumber k=.032 m 4

indicating the presence of a dominant wave of 192 m wavelength.
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Fig. 2: SAR intensity waveslope spectrum lbr the image strip.
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Fig. 3 givesa polarizationorientationmodulation spectrum for the stnp

which, agauz,has a strongpeak atthe same wavenumber position.The signatures

used to produce Fig,3were allnormalized tounityto minimize any intensity

modulation.The peak isproduced by signaturelocationchanges due to wave slopes.

This prelimimu'ystudy indicatesthatincaseswhere changes in the polarization

signaturemorphology are slight,slopeinducedorientationchanges can be detected-

and possiblymeasured. The techniqueworks for theocean (orselectedland areas)

where the signatureissharplypeaked and relativelyconstant.

4.0 CONCLUSIONS

A polarim_tnc technique for improving the visibility of waves, whose

propagation direction has an azimuthal component, in RAR or SAR images has been
investigated. The technique shows promise as a means of producing more accurate 2-

D polarimetric RAR ocean wave spectra. For SAR applications domination by

velocity-bunching effects may limit its uselhlness to long ocean swell. A modification

of this technique involving measurement of polarization signature modulations in the

image is useful for detecting waves in SAR images and, potentially, estimating RMS
wave slopes.
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INTRODUCTION

Backscattering measurements by SAR from wet snow covered terrain are affected by

two sets of parameters: (1) sensor parameters which include the frequency, polarization, and

viewing geometry, and (2) snowpack parameters which include snow density, liquid water

content, particle sizes and shapes of ice and water, type of the correlation function and its

parameters of surface roughness.

The identified scattering mechanics of wet snow-covered terrain from the model pre-

dictions and measurements of the polarimetric properties (Shi et al, 1992) shows that the

first-order surface and volume scatterings are dominated scattering source. We can con-

struct, in general, the backscatter model of wet snow-covered terrain with two components:

= (1)

where a is the backscattering coefficient, pp indicates polarization. The subscript t, s,

and v represent the total backscattering, the surface backscattering from the air-snow inter-

face, and the volume backscattering from the snowpack, respectively. The relation between

backscattering and snow wetness is controlled by the scattering mechanism. When the

surface is smooth, volume scattering is the dominant scattering source. As snow wetness in-

creases, both the volume scattering albedo and the transmission coefficients greatly decrease.

This results in a negative correlation between the backscattering signals and snow wetness.

When the surface is not smooth, increasing snow wetness results in greatly increased sur-

face scattering interaction and surface scattering becomes the dominant scattering process.

Therefore, a positive correlation between the baekscattering signals and snow wetness will be

observed. The characteristics of above relationships makes it difficult to derive an empirical

relation from field measurements and a physical based algorithm is needed for a large region

snow wetness estimation.

Our previous works (Shi et al., 1993) indicated that the ratios of a _ to o"nh and

(7whh to a hh could be used for snow wetness retrieval at C-band. The development of

the inversion model was based upon the relations of the first-order surface and volume

backscattering model predictions. The small perturbation model was used to predict the
relations between snow wetness and above ratios, which are independent of surface roughness

and only dependent on the local incidence angle and snow dielectric property. Our resent

study (Shi et al,. 1993) showed an over-estimating snow wetness by this method. The tested

results had an average relative error about 23 percent and the maximum error could research

50 percent. This is because the small perturbation model can only be applied to smooth

surface. The accuracy of this model is generally within 2 dB for surfaces with standard

deviation of surface height less than 0.1 of the wavelength and small surface correlation

length (kl less than 3) (Chen et al., 1988).
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Due to the surface roughness parameters of most of natural surface are outside the range

of the valid conditions for the Small Perturbation and Geometric Optical models, application

of these surface scattering models are greatly limited to certain types of the surface roughness

conditions. The recently developed Integral Equation Model (IEM) (Fung et al., 1991 and

1992) allows a much wider range of the surface roughness conditions. However, it does not

allow to apply this model directly to infer geophysical parameters because of the complicity

of this model and the limited independent observations provided by SAR measurements.

This study shows our continue efforts on developing and testing the algorithm for re-

trieval snow wetness using C-band JPL AIRSAR data. We show (1) a simplified surface

backscattering model particularly derived for wet snow physical conditions from the numer-

ical simulations by IEM model, and (2) snow wetness retrieval model test and comparison
with ground measurements using C-band AIRSAR data,

INVERSION MODEL DEVELOPMENT

The volume backscattering coefficient is a function of the permittivity and the volume

scattering albedo (depending on snow density, wetness, particle size, size variation and

shape). Under the spherical grain or random oriented particles assumption, the relationship

for the first-order volume backscattering signals of VV and HH polarizations can be also
obtained:

- TL(0,,c ) (2)

where T_ and T_h are double pass of the power transmission coefficients.

The surface backscattering is a function of the permittivity of wet snow (depending on

snow density and wetness) and the roughness of the air-snow interface which is described by

the auto-correlation function of random surface height, the standard deviation of the surface

height, and the correlation length. Due to complicity of IEM model and the limited number

of independent observations from the polarimetric SAR, we need to minimize or combine

these factors in order to develop an algorithm of measuring snow wetness.

Using IEM model, we simulated surface backscattering coefficients of a,_ and a,_hh
at C-band for the possible snow wetness and surface roughness conditions. The simulated

backscattering coefficients cover the ranges for snow wetness from 1 percent to 13 percent,

for the incidence angle from 25 ° to 70", for the standard deviation of random surface height

from 0.1 mm to 15 mm, and for the surface correlation length 0.5 cm to 25 cm. Through

statistical analysis, we found a simplified form for the backscattering coefficients

hA [ 1.12Sn ] '.2
_' = I_hhl2 L(o.Ti7-sR)J (3)

: [ 1.06sR ] ,2cr ['(0.17_ + SR. (4)

[otvv]21.05SRcos(8i)

where c%v and ahh are same as that for the small perturbation model and given in (Tsang

et al,. 1985). The Sn is the surface roughness parameter, which is Sn = ks2Wcos2(8). W

is the Fourier transform of the power spectrum of the surface correlation function.

As predicated by the models of the first-order surface and volume backscattering, the

correlation coefficient in H and V channel is perfect correlated. The real part of the cross

product of VV and HH complex scattering elements, Re[S_tvSthh*], can be related to the

surface and volume backscattering coefficients by

= = + (6)

62



Theratioof a_hh/avnhcanbewrittenas

__hh Re[T:_hh.]
DTv(O_,¢_)- % -- (7)

Using Equations (1) to (7), we can derive two inversion formula for snow wetness re-

trieval as

DTVO._v _vvhh vv vvah (8)--a t = DTVO" s --as

and

DTa hh - cr7_ -- DTCrh n -- _r__ (9)

In Equation (8) and (9), there are only two unknowns: the snowpack permittivity and

the surface roughness parameter SR. Therefore, we can obtain the estimations of snow

wetness and surface roughness parameter by solve the equation (8) and (9) simultaneously.

COMPARISON WITH AIRSAR MEASUREMENTS

The data used in this study for testing the algorithm are from the NASA/JPL airborne

imaging polarimeter overflying the central part of the Otztal test site on June 25, 1991. The

experiment consisted of three flight passes at a flight altitude about 10,600 meter a.s.I. Two

of the flight lines were aligned in E-W direction, shifted by 4 km. in latitude. Another was

collected from an W-E flight line, resulting in opposite look direction.

At the time of the radar survey the snow cover was wet at all elevation zones. In ground

sampled data, the liquid water content in the top snow layer (5 cm), obtained from average

values at 0 and 5 cm, was ranged from 4.0 to 7.2 percent by volume. Snow grain radii were

from 1.0 to 2 mm in the top snow layer. The snow densities and depths (over glacier ice)

ranged from 460-530 kg m-a and from 40-205 cmrespectively. In addition to snow physical

parameters measurements, surface roughness was measured by a lasermeter. The standard

deviations of surface height were 0.1-0.7 cm; correlation lengths ranged 1-23 cm.

To test the algorithm for measuring snow wetness over a large area, snow-covered area

map was first obtained and non-snow-covered area was masked. Secondly, the stokes matrix

for a given pixel was determined by the mean value within a 3 x 3 window in order to

reduce the effect of image speckle. Figure 1 shows two maps of the inversion-derived snow

wetness, which are derived from two images with E-W flight passes. The image brightness

is proportional to the snow wetness by volume. The black region is non-snow-covered area.

At most of the lower elevation region, the inferred liquid water content of the top snow

layer was in the order of 5 to 7 percent by volume. It decreases to 1 or 4 percent at the

higher elevations. This agrees well ground regional conditions. Both snow wetness maps

derived from different incident angle showed a consistent results within 2 percent. Figure 2.

shows the comparisons between the field measurements and the SAR derived snow wetness

for the locations where the ground measurements were available. The line indicates where

the snow wetness is exactly same from the ground and SAR derived measurements. The

measurements above and below this line indicate an over-estimation and under-estimation,

respectively. The relative error was within 25 percent from all measurements. In overall, the

algorithm performed well and provided a consistent results, less than 2 percent for absolute

values, at different incidence angles. The magnitude of the error is within the range we

expected. Since the algorithm performed at different incident angle produces the consistent

result, it is also possible to calibrate the algorithm.

CONCLUSIONS

This study shows recent results of our efforts to develop and verify an algorithm for

snow wetness retrieval from a polarimetric SAR. Our algorithm is based on the first-order
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scatteringmodelwithconsiderationof bothsurfaceandvolumescattering.It operatesat
C-bandandrequiresonlyroughinformationaboutthe icevolumefractionin snowpack.
Comparing ground measurements and inferred from JPL AIRSAR data, the results showed

that the relative error inferred from SAR imagery was within 25 percent. The inferred snow

wetness from different looking geometries (two flight passes) provided consistent results

within 2 percent. Both regional and point measurement comparisons between the ground

and SAR derived snow wetness indicates that the inversion algorithm performs well using

AIRSAR data and should prove useful for routine and large-area snow wetness (in top layer

of a snowpack) measurements.

Chen,

Fung,

Fung,

Shi,

Shi,

Tsang,
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Figure 1. C-band SAR derived snow wetness maps.
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Figure 2. Comparison of ground measurements with SAR derived snow wetness.
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I. INTRODUCTION

Significant efforts have been made to decompose polarimetric radar data into

several simple scattering components. The components which are selected because of

their physical significance can be used to classify SAR image data. If particular com-

ponents can be related to forest parameters, inversion procedures may be developed to

estimate these parameters from the scattering components.

Several methods (van Zyl, 1989; Freeman and Durden, 1992; van Zyl, 1992)

have been used to decompose an averaged Stoke's matrix or covariance matrix into

three components representing odd (surface), even (double-bounce) and diffuse

(volume) scatterings. With these decomposition techniques, phenomena, such as

canopy-ground interactions, randomness of orientation and size of scatterers, can be
examined from SAR data.

In this study we applied the method recently reported by van Zyl (1992) to

decompose averaged backscattering covariance matrices extracted from JPL SAR

images over forest stands in Maine, USA. These stands are mostly mixed stands of
coniferous and deciduous trees. Biomass data have been derived from field measure-

ments of DBH and tree density using allometric equations. The interpretation of the

decompositions and relationships with measured stand biomass are presented in this

paper.

2. DECOMPOSITION

van Zyl (1992) showed that for azimuthally symmetrical terrain in the monos-
tatic case, the average covariance matrix of backscattering can be decomposed as:

[TI = C _q = _iki ki + (1)

0 i=1

where C:'<ShhShh*>, p:<ShhShv*>, _:2<ShvShv *>If , _:<SvvSvv *>If. The

_i,i=1,2,3 are the eigenvalues of [T]. k,,i=1,2,3 are the corresponding eigenvectors
and + means adjoint. Since the eigenvectors are unitary vectors and the sum of the

eigenvalues equals the total power of the backscattering, _.x,_.2,_.3, are the backscatter-

ing powers contributed by odd, even and diffuse backscattering components, respec-
tively. We also note that the _.3 is exactly the backscattering power at cross-

polarizations, i.e. 2<ShhSh_,*>. In terms of backscattered power, this algorithm

decomposes the power from co-polarized returns into odd and even scattering com-

ponents. For those targets with p=0, depending on the _>1 or _<1, one of the two

eigen values (either _, or _-z) equzds the HH return and the other the VV return.

When _= 1, the odd and even scattering components are equal.
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3. RESULTS AND DISCUSSION

3.1. Decomposition and Forest Biomass

Figure 1 presents scatter plots of total above-ground fresh biomass of 47 forest

stands versus 3,1,_,_. 3 and _r° at HH, HV and VV polarizations at L band. Table 1

summarizes the correlation coefficients for scattering components and measured

biomass. Comparing the two plots in the third row demonstrates that _.3 (diffuse
scattering) is identical to the sum of the cross-polarization backscatter cross sections.

The X2 (even scattering component) has higher correlation with biomass than the odd

scattering component. In the first-order backscatter models, the odd scattering is from

crown backscattering and direct backscattering from ground surface. If the canopy is

dense and tall, crown backscattering will be the major source and the odd scattering
should have higher correlation with forest biomass. This is not obvious from the data

shown in Figure 1 or listed in Table 1.

3.2. Decomposition and Forest Classes

Table 2 lists the decomposition results of several classes at C, L, and P bands.

Generally, the odd scattering is always the major component. The even scattering
component is higher for forest stands with large and dense trees at L and P bands.

The higher entropy values of dense forest stands at L and P bands show a high degree
of disorder (randomness) of scatterers. At C band, except for Bog and Red Pine sites,
all sites have the similar entropies.

3.3. Decomposition of modeled Scattering

Backscatter models (Sun, 1990) were used to simulate backscattering from the

47 stands. The tree density and size for a stand were from field measurements, but

trees were assumed to be pure hemlocks and the ground surface to be a rough surface
similar to an old cut area near these stands. The decomposition of SAR data and

modeled scattering matrices at L band were compared in Figure 2. The simulated

components have good correlation with biomass. Though the comparison between

SAR and simulated data is crude, it seems that model gives reasonable results in terms
of even and diffuse scattering but not for odd scattering.

4. SUMMARY

The decomposition method partitions the co-polarization return into odd and

even scattering components. The partition depends on two parameters, i.e. p and

only. It helps to classify radar polarimetry return into general groups of scattering
behavior.

The HV backscatter or diffuse components has the best correlation with forest
biomass.

Comparing to HV backscatter, HH and VV backscatters have higher signal to

noise ratio and are desirable for developing an inversion algorithm for forest parameter

estimation. More works, however, need to be done to separate scattering components
heavily influenced by ground surface from the co-polarization signatures.
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Figure 1. Comparisons of SAR original HH, VV and HV backscattering with decomposed scattering in

terms of their relation to total above-ground fresh biomass.

Table 1. List of correlation parameters to biomass
for variables in Figure 1 (y = bo+blx).

b0 bl R z F-value R.S.E
_,] 2.470 0.193 0.281 17.54 0.436
X,z 3.458 0.237 0.601 67.79 0.3245
_,3 3.260 0.201 0,680 95.73 0.291
VV 2.971 0.202 0.316 20.80 0.425
HH 2.843 0.225 0.455 37.59 0.379
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Table 2. Decomposition of SAR data at C, L and P bands.

Site X1(%) _2(%) _.3(%) Total Power En_opy
C Band

Grass 57.94 23.09 18.97 0.2176 0.8829

Bog 78.15 12.02 9.83 0.5508 0.6147

Regen 58.71 23.16 18.13 0.3183 0.8748

Clear 61.84 20.34 17.82 0.4676 0.8451

Aspen 57.73 20.49 21.78 0.4632 0.8865

Mixed 63.55 19.74 16.71 0.4382 0.8259
Hemlock 62.64 20.73 16.63 0.4385 0.8352

Red Pine 49.38 21.59 29.03 0.2596 0.9452

Spruce 60.71 20.01 19.28 0.5368 0.8576:
L Band

Grass 81.88 10.56 7.56 0.0700 0.5429

Bog 84.00 8.03 7.97 0.3086 0.5011

Regen 53.14 25.56 21.30 0.1900 0.9230

Clear 61.32 21.48 17.20 0.3105 0.8492

Aspen 42.54 30.73 26.73 0.3921 0.9820

Mixed 46.42 29.89 23.69 0.3746 0.9634

Hemlock 45.69 28.27 26.04 0.4263 0.9698

Red Pine 44.06 27.68 28.24 0.5585 0.9774

Spruce 50.73 27.13 22.14 0.5488 0.9394

P Band

Grass 89.64 6.87 3.49 0.0848 0.3631
Bog 88.48 6.32 5.20 0.1622 0.3975
Regen 60.42 25.01 14.57 0.1516 0.8480

Clear 63.24 22.16 14.60 0.2245 0.8230

Aspen 52.37 23.18 24.45 0.3627 0.9303
Mixed 49.13 30.07 20.80 0.3474 0.9440

Hemlock 48.83 28.37 22.80 0.4596 0.9508
Red Pine 58.95 24.64 16.41 0.6692 0.8677

Spruce 53.43 25.28 21.29 0.4608 0.9210
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Figure 2. Decompositions of modeled backscattering and comparison with SAR data.
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I. INTRODUCTION

The ability of remote sensing for monitoring vegetation density and soil moisture
for agricultural applications is extensively studied. In optical bands, vegetation indices
(NDVI, WDVI) in visible and near infrared reflectances are related to biophysical
quantities as the leaf area index, the biomass. In active microwave bands, the quantitative
assessment of crop parmneters and soil moisture over agricultural are_ks by radar
multiconfiguration algoritms remains prospective. Futhermore the main results are mostly
validated on small test sites (Ulaby et at. 1984), but have still to be demonstrated in an

operational way at a regional scale.

In this study, a large data set of radar backscaltering has been achieved at a
regional scale on a french pilot watershed, the Orgeval, ahmg two growing seasons in
1988 and 1989 (mainly wheat and corn). The radar backscattering was provided by the
airborne scatterometer ERASME, designed at CRPE, (C and X bands and 1{11and VV

polarizations). Empirical relationships to estimate water crop ,and soil moisture over wheat
in CHH band under actual field conditions and at a walershed scale are investigated.

Therefore the algorithms developped in CHH band ,are applied for mapping the surface
conditions over wheat fields using the AIRSAR and TMS images collected during the
MAC EUROPE'91 experiinent. The synergy between optic:d and microwave bands is

analysed.

2. THE ORGEVAL CAMPAIGNS ' 88,89 and 91

The characteristics of the scatterometer ERASMF. is p,escnted in Table 1. The

French test site is the Orgeval experimental watershed of 5 by 5 km 2 (France), mainly

covered by wheat and corn with silt loamy soils. 49 fields of wheat and 12 fields of corn
are identified. During 1988 (AGRISCATF), the scatteromctcr L:RASME was performed
along a 17 km axis through the basin during June and July with 17 test fields (wheat and
corn). In 1989, it was performed along 14 crossed-axis cove,ing the watershed (21 test
fields) for every month from March to December 1989.

During the Mac-Europe Campaign'91, flights of the NASA airborne sensors (the
multispectral radiometer qTvlS, the synthetic aperture radar AIRSAR) have been done,
simultaneously with flights of ERASME.The two intensive periods were two weeks, the
first mid June and the second mid July. 2 test fields (wheat and corn) were instrumented.

Only two enough clear TMS images ,are available, the 17 July and the 22 July. The
concomittant AIRSAR image is the 16 July.Ground u'uth measu,cmcnts related to soil
and vegetation are soil moisture, soil profiles with a 2 meter pin-profiler, leaf area index,

crop height, biomass and water content.

3. EMPIRICAL RELATIONS IN CHH BAND

Considering the distribution of radar cross sections at 20 and 40 degrees of
incidence angles with the vegetation water content (Figures 1 and 2), it appears that the
behaviour of radar backscattering can be divided in two cases, low vegetation cover and
high vegetation cover. For vegetation water conteut lower than 2, the cross sections for
both 20 and 40 degrees are highly variable. The vegetation water content is not the
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Table 1 Radar Characteristics of ERASME

Type

Frequencies

Transmitted

Power

Modulation

Antenna Axis

Position

Range
Resolution

Antenna Range

Altimeter

Antenna

Pixel Size

Accuracy

Forward looking FM/CW

5.35 GHz and 9.65 GHz

11.2 dBm at C band

20 dBm at X band

Sawtooth, 3ms of period

23 ° , 38 ° and 45 °

0.97m at 23 °

1.30m at 38 ° and 45 °

+10 ° in elevation

+2 ° in azimuth

Nadir Hom

20m by lOm

ldB +7 ° apart the axis

Figure I- Radar backscattering at 20 degree of incidence
from Orgeval'88-89 related to vegetation water content
in kg/m 2 and classilied with soil moisture in cm3/cm 3
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dominant parameter. The relevant parameter for radar cross sections is the soil moisture.

For vegetation water content Mv higher than 2, it appe,'us a linear relation between the

radar cross sections and the vegetation water content. The radar backscattering is decrasing
with increasing crop coverture. The soil moisture is no more an influent parameter.

3.1 Case of low vegetation cover

The relation of cross section with soil moisture Wg for bare soil is established
using data points with the lowest values of vegetation cover (Mv<lkg/m2). A linear
relation is obtained at 20 and 40 degree as proposed by Ulaby (1978):
The 2 obtained relations at 20 and 40 degrees are:

c0soil(20)= -12.1+0.18 Wg (1)

c0soil(40)= - 13.8+0.14 Wg (2)

with comparable slopes and a shift of about 2dB.
This simple linear relation is obtained only for wheat culture. Linear relations between
radar cross sections and soil moistures ,are no longer available for bare soils in the cases of
corn sowing or of ploughs.

Linear relation between radar cross sections and soil moistures _Lreobtained with

low vegetation cover, (Mv< 3 kg/m2) ( Figure 3). The relations at 20 and 40 degrees ,are:

c0soil(20)= - 15.6+0.29 Wg (3)

c0soil(40)= - 14.9+0.14 Wg (4)

The cloud model has been adjusted over wheat, taking only the attenualed part by the
vegetation:

c0= t2 c0soil and t2 = exp(-2B My/cos0) and cr0soil in dB= C1 - C2 0 + D Wg
with 0 the incidence angle.

t_0 in dB= -8.69 B My/cos0 -C1 - C2 0 + D Wg (5)

The adjusted coefficients are:B=0.09,Cl=-8.32.C2 =0. 147,1)=0. 193 (comp_u'able with
results of Pr6vot et al. 1993).

3.2 Case of high vegetation cover

For dense canopy (Mv>3kg/m2), the soil moisture is no mo,'e a relevant
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Figure2-Radarbackscatteriugat40degreeofincidence
fromOrgeval'88-89relatedtovegetationwatercontent
inkg/m2andclassifiedwithsoilmoistureincm3/cm3
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parameter to parameterize the ra&u" cross section (see Figures 1 and 2). The cross sections
at 40 degrees are related quasi linearly to vegetation water content. The radar backscattering
is attenuated when the foliage density is increasing (Prtvot et al., 1993). At 20 degrees,
radar cross section is highly variable for the same foliage density indicating that other
structural parmeters of canopy have to be accounted. Experimental linear relation between
radar cross section and vegetation water content can be prolx_sed from the data set.

At 40 degrees, Mv=-0.35o0dB-1.44 (6)

But as the dependance of the cross sections with the soil moistme disappears, the
formulation given by the attenuated part of the cloud model fitted for Mv<3kg/m 2 is no
more available.

4. APPLICATION TO THE ORGEVAL'91/MAC-EUROPE
EXPERIMENT

A map of the 49 fields of wheat over the basin is given in Figure 4. The synergy
between the TMS (17 July) and the AIRSAR (16 July) images is investigated. The TMS

image has been radiometrically calibrated and corrected from atmospherical diffusion in
visible/near infrared bands. Approximate calibration of LAI (le_d"area index) versus NDVI
(Normalized Vegetation index) and vegetation water content _'Iv) versus LAI are obtained
over- the reference field:
LAI=- 4.1+11.4 NDVI (7)
Mv=2.32+0.25 LAI (8)

Spatial variations of NDVI and Mv over the wheat parcels _u'e derived (Figure 5).

As the magnitude of the estimated Mv are between 2.8 and 3.4 kg/m 2, only a map of the
vegetation water content can derived froln the radar cross section of the AIRSAR images (
2 images around 45 degree of incidence with 2 flight directions, perpendicular and parallel
to the average rows direction in the watershed). The algoritlun related radar cross section
and Mv (Eq. 7) has been used. An intercalibration between the AIRSAR and ERASME
data is done before, as the AIRSAR data are systematically lower of about -3.5dB.
Therefore AIRSAR data are decreased of -3.5dB and alter of +ldB to approximate the cross

sections at 40 degrees needed in Eq. 7. The value of-1 dB has been calculated from
statistical relation between the ERASME data at 40 and 45 degree.

It has been noted that the derived vegetation (LAI,Mv) pa,amcters from
microwave algoritms are lower and more scattered than those deduced from the optical

vegetation index. Nevertheless the accuracy of relationships using optical vegetation
index is also to be assessed.
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Figure 4- M_ap_of__wheatfields over the Orgeval

5- CONCLUSION

Figure 5: Spatial variations of NDVI and deduced

vegetation water content My (kg/m 2) over wheat
fields. "
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A complementary use of the optical and microwave bands is proposed. Over
wheat, the knowledge of the vegetation index values appear necessary to discriminate
dense or low vegetadon cover over the wheat fields and choose the adequate microwave
algoritm to derive either the soil moisture, either the water content of the vegetation. In
CHH band, radar data at 20 and 40 degree can be used to derive soil moisture for low

cover. Radar data at 40 degree are used to derive water content and are not saturating as
soon as optical vegetation index NDVI.

Figure 6: Intercomparison of radar cross section from
AISAR and ERASME

COMPARISON AIRSAR ET ERASME
16 JULY 91 ORGEVAL

m

o'O

E_

-5

-7

-9

-1!

-13

-15

sig erasm.:-S.9÷0.$6 slg airsar R:0.7

i...............i

i

S ......... ..............i................
-13 -i I -9 -7 -5

a|rsar4S si 9 d8

Figure 7: Simultaneous estimation of Leaf Area Index

and vegetation water content from optical (TMS)and
microwave (AIRSAR) images.
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1. INTRODUCTION

In preparation for the launch of SIR-C/X-SAR and design studies for future
orbital SAR, a program has made considerable progress in the development of an SAR
terrain classifier and algorithms for quantification of biophysical attributes. The goal of

this program is to produce a generalized software package for terrain classification and
estimation of biophysical attributes and to make this package available to the larger
scientific community. The basic elements of the SAR terrain classifier are outlined in
Figure 1. An SAR image is calibrated with respect to known system and processor gains
and external targets (if available). A Level 1 classifier operates on the data to differentiate:
urban features, surfaces and tall and short vegetation. Level 2 classifiers further subdivide
these classes on the basis of structure. Finally, biophysical and geophysical inversions

are applied to each class to estimate attributes of interest.

The process used to develop the classifiers and inversions is shown in Figure 2.
Radar scattering models developed from theory and from empirical data obtained by truck-
mounted polarimeters and the JPL AirSAR are validated. The validated models are used in
sensitivity studies to understand the roles of various scattering sources (i.e., surface,
trunk, branches, etc.) in determining net backscatter. Model simulations of cr° as

functions of the wave parameters ( ;L, polarization and angle of incidence) and the

geophysical and biophysical attributes are used to develop robust classifiers. The
classifiers are validated using available AirSAR data sets. Specific estimators are

developed for each class on the basis of the scattering models and empirical data sets. The
candidate algorithms are tested with the AirSAR data sets. The attributes of interest
include: total above ground biomass, woody biomass, soil moisture and soil roughness.

i
l ......

• r _tl,,e,

Figure 1. SAR terrain classifier

1

No¢ - Allgorilhm T_llng --

Figure 2. Development and validation process
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2. LEVEL 1 CLASSIFIER

After calibration, an SAR image is classified in two stages. The Level 1
classifier operates at a pixel level to distinguish urban, tall vegetation, short vegetation
and bare surfaces. The classifier has been designed for use with S1R-C/X-SAR. Hence,
the data inputs are polarimetric L- and C-band data. JPL AirSAR 4-look data for
Pellston, Michigan are used to train the classifier. The classifier uses: cr° (hh, vv and
hv) at L- and C-bands, the peak co-polarized relative phase difference and texture. The
FORTRAN classifier uses a knowledge-based, binary decision tree to differentiate the
four terrain classes as shown in Figure 3. Figure 4 shows the classification of the
training image. The classification accuracy is found to be in excess of 90% (see Table 1)
for both the training data and independent test areas within the scene. Classifier errors
generally involve assignment of short vegetation to either bare surface or tall vegetation
classes. Application of the classifier to other images obtained at a SIR-C/X-SAR
supersite near Raco, Michigan yield equally impressive results.

AIR SAR IMAGE l

I'ixel = Urban?iTexture,Ct] Urban

_o
Pixel = Tall Veg?

[O.ohh(L),Oon,(L)] J Tall Vegetation

[_o

Pixel = Short Veg? _ Short Vegetation[o°,, (C),T...... (L)}

Pixel = Bare Surface ?Ires _ Water

[,_°_(c),_r°h.(L)I _ Bare Snrface_. C,,rou.d

_Short Vegetation

Figure 3. Level 1 classifier design

Table 1. Level 1 Classifigr Res_tlts

Training Areas

True Class

Bare

Classified As Urban Tall Veg Short Veg _Surface

Urban 99.3 0.22 0 (I.06

Fall Veg 0 98.32 0 0

Sl'nn'l Veg 0.50 1.46 94.74 0.87

Barc Surfate 0.20 0 5.26 99.07

Independent Test Areas

Classified As

Urban

"Fall Veg

Short Veg

Bare Surface

True Class

Bare

Urban Tall Veg Short Veg Surface

99.1 0 0.85 0.01

0.1 98.04 2.84 0.01

0.63 1.96 90.77 0.18

0.17 0 5.54 99.79

Figure 4. Classified AirSAR images from Pellston,
MI. Urban = white, Tall Vegetation = light grey,
Short Vegetation = dark gray, Bare surfaces = black.
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Figure 5. P-band response to forest biomass. Data
from loblolly pines (Duke Forest) and maritime pines
(Landcs Forest).
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3. LEVEL 2 CLASSIFIER

The Level 2 classifier is used to select appropriate estimator algorithms for a

given pixel. It operates on the premise that multifrequency SAR is sensitive to surface
and canopy structure (i.e., geometric attributes). AirSAR studies of pines at the Landes
Forest in Bordeaux and the Duke Forest in North Carolina show a power-law dependence

of 0.0 on aboveground biomass, cr° is found to saturate at biomass levels that scale
with wavelength: P-band = 100 tons/ha, L-band = 50 tons/ha and C-band = 10
tons/ha. The P-band response shown in Figure 5 indicates that biomass estimators are
feasible below the saturation level. For the pine forests (excurrent tree form), AirSAR

data indicates a dependence on crown structure only at C-band. Natural forests in
particular are not mono-specie. Examination of AirSAR data from test sites in northern
Michigan at Raco and Pellston demonstrates that the different branch and trunk structure
of decurrent tree forms yield distinctive biomass relationships at long wavelengths.
Hence, it is necessary to subclassify tall vegetation into distinctive SAR structural

categories prior to application of estimator algorithms.

The level 2 classifier for tall vegetation is based upon model results using
MIMICS, a 1st order vector radiative transfer model for closed canopies. Simulations for

grass, shrubs, and excurrent and decurrent tree torms use growth models for canopies
ranging from 0 to 200 tons/ha. The model yields modified Mueller matrices from which
0.0 and relative phase properties can be calculated for net backscatter as well as the

component source terms. An example of the simulated data is shown in Figure 6.

Model results at P-, L-, and C-bands and 20°< 0 < 60 ° provide a number of

potential classifiers for separation of tall vegetation into shrubs, excurrent trees and
decurrent tree forms. Testing of these classifiers with mixed-specie AirSAR data from

o o

Raco and Pellston, Michigan shows the spectral gradient ( cr;t1 - o)t,2 ) tO be a sensitive

discriminant of tree form. The gradient from P-band to C-band yields the best results as
shown in Figure 7. L-band is not a suitable substitute for P-band because of attenuation
by the crown layer of branches and leaves.

9.

tXl

L-band, HH

-5 ExcurrentTrees(

-I0 DecurronlTrees _

-15 Green Shrube

-20- Woody Shrubs

-25.

-30_ :D" ...... D ...... Grass

-35.

-40
o _ lb ;s 20

Total Biomass (kg/m 2)

Figure 6. MIMICS simulations of backscatter

from various vegetation classes at 0--40 °.
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Figure 7. The spectral gradient is greater for
excurrent tree forms.
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4. LEVEL 2 MAPPER OF SURFACE PROPERTIES

A suite of estimator algorithms are being designed to operate on each sub-class.

For vegetated regions, the algorithms yield estimates of biomass, stem density, canopy
height, etc. For bare surfaces, estimator algorithms quantify surface roughness and near-
surface soil moisture. The surface algorithms have been developed on the basis of truck-

mounted polarimeter data. Semi-empirical formulations using polarization ratios yield
estimates of surface roughness and soil permittivity. Soil moisture is inferred from

permittivity. Some results of this algorithm are shown in Figure 8 for scatterometer data
(Oh, 1992). Polarimetric SAR data is required and long wavelengths are preferred (i.e., P-
and/or L-band).

5. CONCLUSIONS

An SAR-based terrain classifier and biophysical attribute mapper has been
designed on the basis of theoretical models and empirical evidence. The level 1 and 2

classifiers take advantage of multifrequency, polarimetric SAR as a structure mapper.
Tests of the classifiers on AirSAR data from two distinct sites in northern Michigan at
different times of year produce excellent results.

Estimator algorithms for surface attributes have been developed and tested using
scatterometer data. Evaluations of the algorithms using AirSAR data from Chickasha,

OK and Davis, CA are currently underway. Estimator algorithms for canopy biophysical
attributes are in development and will be tested on AirSAR data prior to the SIR-C/X-
SAR launch in 1994. The classifier and estimators require polarimetric data at L- and C-
bands. The addition of P-band is found to yield superior results for forested areas due to
increased penetration and sensitivity to trunk attributes.
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1 Introduction

During the Mac-Eurot)e campaign of 1991 several SAR experiments were carried out in the Flevoland

test area in the Netherlands. The testsite consists of a forested and a agricultural area with more than

15 different crop types. The exl)eriments took place in June and July (mid to late growing season).

The area was monitored by tile spaceborne C-band VV polarised ERS-1, the Dutch airborne PHARS

with similar frequency an(l polarisation and the three-frequency (P-, L- and C-band) polarimetric AIR-

SAR system of NASA/JPL. The last system passed over on June 15, July 3, 12 and 28. The last two

dates coincided with the overpasses of the PttARS and the ERS-1. Comparison of the results showed

that backscattering coefficients from the three systems agree quite well(van den Broek and Groot, 1993).

In this paper we present the results of a. study of crop type classification (section 2) and soil moisture

deterininalion in the agricultural area (sect ion 3 ). For these studies we used field averaged Stokes matrices

extracted from the A IRSAR data (processor version :1.55 or 3.56).

2 Classification of agricultural fields

Field averaged Stokes ma.trices contain five non-zero cross products (O'hh:<,._hhS_h>, Gvv=<SvvS_v>,

Ghv_-- <,ShvShv"* >, p= <,5"hhSvv> ), where the last. cross product is complex. The <S_oS_,o,s> products

are zero due to azimuthal symmetry. We use here two classification methods: a Gaussian maximum

likelihood (GML)method which uses the t)olarimetric information directly and the so-called polarimetric

contrast classification (P(:(') method which uses this information lnore indirectly. For the study of crop

type classification we have selected 330 agricultural tields with 8 crot)-type classes (see Table)

crop type #fields crop type #fields

rat)eseed 13 sugar beet 63

grass 41 corn 15

t)otato 86 barley 19

wheat 84 beans 9

2.1 Gaussian lnaximuln likelihood classification

This method deals with feature vectors of arbitrary dilnensionality. We can use single features as C-band

0 y_t,,0 =o oo multi-temporal vectors as X-(o'15/6,o'3/7,cr_ (ERS-I), full polarimetric vectors a.s "'--t " hh ,",_, h,, P) or _ o o

0 0
az2/r,_r2s/7) fox' one particular t)ola.l'isation combination. We obtain ensemble statistics fox" every crop-type

class by calculating the mean vector/q=E[X d and the covariance matrix Cij=E[(xi-#i)(xj-#j) t] with E

the expectation value. Next we calculate for every field the distance function D defined by

tloglCl_ 

to all crop-type classes. The field is assigned to that crop-type class for which this distance is a minimum.
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Figure 1: Classification results with the GML (full line) and PCC (dotted line) method using polarimetric

(Fig. la, left) and multitemporal features (Fig. lb, right).

2.2 Polarimetric contrast classification

This method was originally introduced by Kong (1990). It. uses the so-called optimum contrast A between

two Stokes matrices Ma and M_,, which is detined by

A - *T _la.s
sT Mb,_ ( 2 )

where the polarisation slate of Stokes veclor ._ is chosen such that k is an extremum. In this method

first the ensemble averages of the Stokes lnatrices for all crop-type classes are calculated. Then for each

field we calculate the optimum ¢onl]'ast with all ('rop-tyI)e classes and the fit,hi is assigned to lhat class

for which the optimum ('ontrasl is a minimum.

2.3 Results

Single feature classificalion success percentages are between 2,0 and 50_(;. Generally tim cry.h results are

0 results. Th(, bes! results are obtained for the C- and L-ban(t cr_ on ,July' 3.better than the cr

The C- and L-band polarimetric success percentages are on average 60(7, for lhe I)CC method and

80% for the GML metho(l (see Fig. lay. The P-band results are significanlly lower for both methods,

since the backscatter of the soil dominates thal of the vegetation here.

When single features of the ,1 dates are combined into multi-temporal f('ature vectors success per-

centages of 70 to 80(7(, at'(, found (see Fig. 11)), so that it. ('an be concluded lhal single (lay polarimetric

classification is more l)owerful than 4 (lay' multiteml)oral classification in the mid to late growing season.

This situation may change when also data ohlaine(I in the beginning of the growing season is used.

3 Soil moisture determination of vegetated soil

For bare soil it is in l)rincil)le possible using radar to measure the top-layer soil moisture content if the

soil roughness is known, since lhe radar backscatter from soil 1)rilnarily (lel)ends on the soil moisture

content and soil roughness, ttowever, when the soil is vegetate(t we have 1o know the transmissivity of

the vegetation layer and also lhe relative ('ontributions in the hackscatter of lhe vegetation and of the

soil. This information cannot be obtained from single frequency and single l)olarisation systems (e.g. the

ERS-1 ), but maybe obtained from the three-frequency l)olarimetric AIRSAR system. Every measurement

with this system delivers 15 features (.5 features for each frequency band, see Secl. 2), which are certainly

not all independent, so lhat the dimensionality of the data-set is less than 15. If the dimensionality of

the data-set remains high enough, however, the information can possibly be use(] to solve for the different

contributions in the backscatter of vegeta|ed soil.
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3.1 Description of the method

In orderto extractthe differentcontributionsin tile backscatterfrom vegetatedsoilweadoptthesimple
modelof Freemanand Durden(1992,hereafterthe FD model).This modeltransformsthepolarimetric

o o GOinformation (Ohh,avv, hv,P) into backscattering coefficients for diffuse, odd- and even-bounce scattering,
which are related to tile interaction of the microwave radiation with the vegetation, with the ground and

with both the vegetation and the ground, respectively. Here we assume this is true for at least the C- and

L-band. For the P-band the diffuse scattering is certainly also affected by the soil. The diffuse scattering

in the model is estimated by assuming that the scatterers in the vegetation medium can be represented

by uniformly oriented and distributed small dipoles (needles). The ratio of the cross- and co-polarised

backscattering coefficient, which we call here the vegetation structure parameter r, is in this case 1/3.

The derived backscattering coefficient for the vegetation is directly related to this parameter.

The derived backscattering coefficient for the soil is related to the true backscattering coefficient by

a°,_,e = T] o o a',f,O) (3)cT,oi_(nh,, a', f, O) = e-'_f a,o_t( m_,,

where T! is the two-way transmissivity of the vegetation layer depending on the frequency f, a' the

soil roughness, 0 the incidence angle and m_ the volumetric soil moisture content. If we assume simi-

larly as in the FI) model that the vegetation backscattering is due to uuiformly oriented small needles

the transmissivity is described by Tj=e -'_j. If we have in addition an accurate model describing the

backscattering coefficients of the soil as a function of the depending parameters, and if the soil roughness

o' is known Eq. (3) contains only two unknowns a. and in v. In that case we can solve for a and my, once

the C- and L-band contributions of the soil are known from the FD model 1 As soil model we use the

empirical model of Oh el. al. (1992) which is valid for incidence angles > 20 ° and fi'equencies > 1 Ghz.

During the campaign soil roughness measurements were performed for some agricultural fields with

different crop types in Flevoland which are however generally valid since the soil composition and cul-

tivation are quite homogeneous in l:'levoland. We also obtained soil moisture measurements of a small

number of fields for the princit)al crot) types (potatoes, wheat, sugar beet and maize) in a part of the

observed agricultural area. Since the soil for potatoes is cultivated in furrows and ridges, which is not

described by the model of Oh et al. and the scattering by wheat and maize is often dominated by even

bounce scattering (especially in the L-band), we choose to use sugar beet in this study. We found 22

sugar beet fields in the selected area, which were vegetated during the three July overpasses.

3.2 Results

The soil roughness c,' is estimated to be 1.2 cm. (Vissers and van der Sanden, 1993). Unfortunately, the

uncertainty is rather large. Using this value for a' we solved for in, and cr requiring that the residue is

less than 0.1 dB in both the ('- and L-band. In this way we obtained soh, tions for 7, 8 and 18 fields

for July 3, 12 and 28, respectively. In Fig. 2a we show histograms of m_, Tc and TL for July 28. The

average soil moisture content is 0.5 gcm -a and the average transmissivity is 0.45 and 0.80 in the C- and

L-band, respectively.
The measured soil moisture content in three sugar beet fields is about 0.25 (Vissers and van der

Sanden, 1993) so that the derived value is too high, although values derived from radar measurement

may be somewhat higher due to the big water-rich roots of the sugar beet plant. Also the value for the

transmissivity in the C-band is rather high, since Bouman ( 1991 ) found that the vegetation layer of sugar

beet in the C-band is probably opaque, so that values less than 0.3 are expected for To.

It appears that the solutions are rather sensitive to the value of the soil roughness parameter a' and

to the vegetation structure parameter r. If we estimate this value from measurements in the C-band,

tA problem may be that the penetration depth is wavelength dependent (,,- A/3), so that different frequencies probe

different soil moisture contents. We assume here that these differences are small in this context.
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r = 1/4 (Fig 2b, right).

assuming that tile contribution of the vegetation dominates that of the soil (Bouman, 1991 ) we find values
of 0.2 - 0.3 for r, which is smaller than the value of 1/3 in the FD model. Clearly the structure of the

sugar beet vegetation is also of importance and cannot simply be represented by small needle scatterers.

If we now change tile values for the vegetation structure parameter r to 1/4 and the soil roughness a' to
1.5 cm we obtain reasonable results for July 28 (see Fig. 2b).

For July 3 and 12 no solutions were obtained in most cases, since on average the C-band soil con-
tribution in the FD model is enhanced COml)ared to the L-band soil contribulio]l. This situation can be

explained when the vegetation structure parameter is lower for tile C-band than for the L-band, which

would imply that in the period between .luly 12 and 28 a change in the slructure i)arameters has oc-

curred. Indeed, measurements with the Et{S-I in 1992 show adrop in backscattering for sugar beets

during this period, which is probably related to a change in the vegetation structure (llijckenberg, private
communication).

We conclude therefore that there is an addional free parameter in the FI) model, which depends on

the vegetation structure and probably also on the fl'equency. Vegetation models like MIMICS (Ulaby et

al., 1990) may help to determine this parameter. Furthermore we need to know the soil roughzmss quite
accurately in order to apply lhis method successfully.
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1. Introduction

As part of research on forest ecosystems, the Jet Propulsion Laboratory (JPL) and

collaborating research teams have conducted multi-season airborne synthetic aperture

radar (AIRSAR) experiments in three forest ecosystems including temperate pine forest

(Duke Forest, North Carolina), boreal forest (Bonanza Creek Experimental Forest,

Alaska), and northern mixed hardwood-conifer forest (Michigan Biological Station,

Michigan). The major research goals were to improve undcrstanding of the relationships

between radar backscatter and phenological variables (e.g. stand density, tree size, etc.),

to improve radar backscatter models of tree canopy properties, and to develop a radar-

based scheme for monitoring forest phenological changes.

In September 1989, AIRSAR backscatter data were acquired over the Duke Forest.

As the aboveground biomass of the loblolly pine forest stands at the Duke Forest

increased, the SAR backscatter at C-, L-, and P-bands i,_creased and saturated at different

biomass levels for the C-band, L-band, and P-band data (Dobson et al. 1992). Due to the

4-page-length limit, we only use the P-band backscatter data and ground measurements to

study the relationships between the backscatter and stand density, the backscatter and

mean trunk dbh (diameter at breast height) of trees in the stands, and the backscatter and

stand basal area.

2. Study area and forest stand data

The tree stands used in this study are located in the Duke University Forest, which

is located west of Durham, North Carolina (36 ° 00' N, and 79 ° 00' W). The Duke Forest

contains forest stands with a total area of 3400 hectare, one-quarter of which are pure

stands of loblolly pine, Pinus taeda L. These pine stands range in age from < 1 to > 100

years in age.

This forest has been the site of ongoing research focused on developing a better

understanding of the potential use of imaging radars for monitoring southern U.S. pine

forests. Akborne SAR data were collected over this forest in 1984 and 1989 (Kasischke

and Christensen 1990, Kasischke et al. 1993a), and satellite data have collected with both

the ERS-I and JERS-1 SARs since 1991 (Kasischke et at. 1993b). This site represents

one Terrestrial Ecology Supersite that will be imaged by SIR-C/X-SAR system in 1994

(Evans et al. 1993).

A total of 23 pine stands are used in this study. The densities of the pine trees in

these stands range between 200 and 1844 trees/hectare. The average dbh of tree trunks in
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thestandsrangesbetween13.7 and 33.9 cm. The average tree height in the stands ranges

from 11.7 to 25.6 m, and the average canopy depth from 5.3 to 9.2 m. The ground sur-

face in the selected 23 stands is level, which minimizes topographic effects on the SAR
data.

3. Results

3.1. JPL AIRSAR backscatter data

JPL AIRSAR data were acquired on 2 September 1989. The data were collected

between 11:30 and 14:30, local time. The AIRSAR data were processed and calibrated

by using 8 ft, (2.44 m) trihedral corner reflectors. The estimated calibration uncertainty

was + 2.0 dB for P-band (0.68 m wavelength) backscatter. The standard 4-look com-

pressed data with pixei spacing of 12.1 m (azimuth) and 6.7 m (slant range) were pro-
vided by JPL. To compute the mean of SAR data for a stand, we located the stand on the

SAR imagery, and the largest possible window within the stand was extracted. For each

stand, at least 200 image pixels were averaged.

3.2. Stand density vs. P-band SAR backscatter

There is almost no relationship between the P-band backscatter and stand density

(Figure 1). Of the 23 stands, as the stand density increases, tree size parameters (e.g. dbh,

tree height, and canopy depth) vary irregularly (Kasischke 1992). Thus, the stand density

is not a good parameter to explain the variation in the SAR back_atter.

3.3. Stand mean dbh vs. P-band SAR backscatter

As the mean trunk dbh of trees in the stands increases, the P-HH and P-HV

backscatter increases. The P-HH and P-HV back_alter is _aturated at stand mean dbh >

25 cm (approximately) (Figure 2a, c). The observed increase in backscatter may be

attributed to the increase of tree sizes. There is almost no relationship between the P-HV

backscattcr and stand mean dbh (Figure 2b),

3.4. Stand basal area vs. P-band SAR backscatter

The P-HH and P-HV back_atter increases when the sland basal areas increase.

There are large variations in the HH and HV backscatter for a given stand basal area (Fig-

ure 3a, c). The P-VV backscatter show ahnost no trend as the stand bas,'d area varies

(Figure 3b).

4. Concluding remarks

For Ioblolly pine stands at the Duke Forest, there is almost no correlation between

the observed AIRSAR P-HH, P-HV, and P-VV backscatter and stand density, and no cor-

relation between the P-VV backscatter and stand mean dbh or stand basal area. The P-

HH and P-HV backscatter increases as the stand mean dbh or the stand basal area

increases. The complex behavior of observed P-band backscatter from the Ioblolly pine

stands shown in this study can not be explained by a single stand parameter (such as

stand density, stand mean dbh, and stand basal area). Ongoing studies on the backscatter

by using forthcoming spaceborne and airborne SAR data, particularly multi-frequency,

multi-angle, and multi-polarization data, and by using a theoretical canopy backscatter

model coupled with the collected ground measurements (W_mg ct al. 1993) should help

complete the picture.
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1. INTRODUCTION

Soil moisture content is an important parameter in many disciplines of science

like hydrology, meteorology, agriculture and others. Microwave remote sensing
technique has a high potential in measuring the dielectric constant of soils, which is

strongly governed by the soil moisture (Ulaby et at. 1982). Much excellent work has
been done on investigating the relationship between backscattering coefficient and

soil moisture (Schmugge et al. 1980, Ulaby et at. 1986, Dobson et al. 1985, Rao et
al. 1992, Shi et al. 1992). Most of these studies are measured in a laboratory or are

carried out with a multitemporal data set. This means, that the variation in the
backscattering coefficient is only related to the soil moisture because all other

parameters influencing the backscattering like surface roughness, vegetation cover,

plant geometry, phenology of plants and row direction are kept constant. In this
study the sensitivity of the backscattering coefficient to soil moisture of corn fields
is investigated. In the framework of the MAC-Europe Campaign in June 1991, the
NASA/JPL three-frequency polarimetric AIRSAR system collected data over the test

site Oberpfaffenhofen (Germany). The AIRSAR campaign in Oberpfaffenhofen was

complemented with intensive ground truth measurements. The sampled corn fields

are nearly in the range of the same incidence angle (=20") and belong to different

soil types. The evaluation was carried out at a single data set. The results show, that

the backscattering, measured at P-band can be described with only two parameters
very well. The main parameter, influencing the backscattering is the soil moisture
content, the second subordinated parameter is the row direction.

2. ANALYSES AND RESULTS

For the assessment of the AIRSAR data for soil moisture retrieval all

frequencies (C-, L- and P-band) were investigated. Also different polarizations and

processing steps were used. Muitiparameter least square regression analysis was
carried out to fit the values of soil moisture (gray. % and vol. %) with these (er °) of

the AIRSAR system. The objective was to identify the best frequency and

polarization respectively the best processing steps for soil moisture retrieval over
corn fields. 17 corn fields with different SMC and different row directions relative to

the look direction have been sampled. All fields are placed within a range with a

similar incidence angle near 20 degrees to avoid effects referring to the incidence

angle. To get different SMC's, the cross section of sampled fields covers three

different types of soils: a loess soil, a waste gravel soil upon glacial gravel terraces
and a drained ground-water soil. One problem is the spatial registration of the SMC

on the ground. Due to the fact, that only point measurements of SMC are possible,

the accuracy of the ground acquisition of SMC depends on the quantity of
measurements.

85



ThebackscatteringcoefficientatC-bandis mainly influenced by the interaction

between the incident wave and the vegetation cover, which is expressed by the good
perceptibility of the land use. The row direction takes no measurable effects and the

differences in the soil moisture are masked from the vegetation cover.

The same investigations were done for the L-band at all polarization combinations.
Also at this frequency the backscattering coefficient is mainly influenced by the
differences in the vegetation cover. However the canopy loss is smaller, which is

expressed by the week perceptibility of soil boundaries representing differences in

soil moisture content. The same is valid for the row direction tracing weekly on
fields with the same vegetation cover, in this case corn.

Summarized it can be said that at L- and especially at C-band and an incidence

angle of approximate 20 ° the attenuation coefficient of vegetation canopies is to
high for monitoring soil moisture without modelling.

Our measurements with P-band look very promising. The attenuation coefficient of
vegetation canopy is relative small, because now the soil moisture is the dominant

part influencing the backscattering (fig. 2). The second subordinated parameter is
the row direction (tab. 1). A multiparameter least square regression analysis with

the parameters row direction, soil moisture content and the backscattering
coefficient was carried out. Figure 1 shows, that 92% of the backscattering can be
de_ribed with the parameter row direction and gravimetric SMC at HH-HV

polarization and with HH polarization 90% of the backscattering. Table 1 illustrates
the composition of the total backscattering referring to the difference of HH-HV
polarization. It can be seen, that the main pan of the signal can be counted back to

the SMC. To get the single least square fit for gravimetric SMC the fields have to be
calibrated to one fixed row direction (in this case 45°). Figure 4 shows the linear

least square fit between gravimetric SMC and o ° at HH-HV polarization. The
correlation coefficient of the relative to the row direction corrected data amounts to

0.83 at HH- respectively 0.85 at HH-HV polarization. Figure 3 demonstrates the

linear dependence of row direction and the backscattering coefficient.
A comparison of the correlation coefficients illustrates the improvement taking a

nonlinear fit. The decreasing slope in the region of lower SMC concerning the
nonlinear fit might be derived from the effects of bound water (fig. 5, tab. 2).

Fairly extensive studies demonstrate that the volumetric SMC represents the
dielectric properties of different soils better than the gravimetric SMC (e.g. Scott &

Smith 1992). This study apparently do not confirm this thesis, but this effect might
be derived from the little number of sampled fields referring to a statistical approach
and the greater inaccuracy in measurement of the volumetric SMC on the ground
due to the small sample volume (100 cm 3) we have used (fig. 6).

The dotted lines in the figures are representing the average standard deviation of the
ground measurements.

A approach was carried out to detect the row direction automatically. With the

correlation coefficient between the HH and VV polarization there is a parameter for
the assessment of the row direction. For corn fields the influence of the row

direction is one order higher at VV polarization as for other polarizations. This is

caused by the strong interaction between the incidence wave and the vertical corn
stalks. These interactions depend on the row direction, because the spacing between

corn plants within a row is much smaller than the spacing between the rows of corn.
At HH polarization the influence of row direction is smaller and shows a more

linear dependance. These results are corresponding with a similar study of Brunfeldt
& Ulaby (1984). The regression between the correlation coeffizients of HH- and VV
polarization and the row direction for each field was calculated. The correlation

coefficient of this regression amounts to 0.67. Using this regression line the angle
between the row direction and the look direction can be assessed. A multiparameter
least square regression analysis was carried out taking the parameters calculated row

direction, grav. SMC ,and the backscattering coefficient of HH-HV polarization. The
correlation coefficient amounts to 0.79 which means that about 80% of the
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backscatteringcanbedescribedwithoutcomplexmodellingofthevegetationcover
onlybythedataitself.Takingintoaccountarelativegreatinsecurityrepresentedby
themeasurementsof theSMConthegroundtheseresultssuggestthatforsoil
moistureretrievalfromSARimageryP-bandisverysuitableusingHH-orHH-HV
polarization.Withthetwoparameterssoilmoistureandknownrowdirectionabout
90%respectively80%ofthetotalbackscatteringcanbedescribeddependingonthe
useofgravimetric-orvolumetricSMC.Furtherinvestigationshavetobedoneto
confirmtheseresultswithotherplantcanopies.Supposingthattheinfluenceofrow
directionisveryhighatcornduetothemarkeddifferencesinspacingbetweencorn
plantswithinarowandthespacingbetweentherowsofcorn,soilmoistureretrieval
withP-bandispromisingevenbetterresultsaboutotherlandusecanopies,
especiallyatsmallerincidenceanglesbecausetheinfluenceofrowdirection
becomessmaller.
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row direction

[degmesl

35

23

23
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75

4

8O

32

40

5

28

73

27

soil moisture

(gray. %)

17,34

14.91

13,61

15,83

15,66

16,39

20.54

20,27

Influence oi

soil moisture [dB]

7.70

6,62

6,04

7,03

6,96

7,28

9,12

9,DO

influence of

row direction [dB)

2.05

1,35

1,35

0,88

2,64

3,87

4,40

4.40

20.54

20,57

21,09

15.93

22.3

26,78

21,81

27,58

23,11

9,12 4,40

9,14 0,23

9,37 4,69

7,08 1,88

9,90 2,35

11,89 0,29

9,69 1,64

12,25 4,28

10.26 1,58

Composition of the total backscattering at

residue {dS]

0,81

0,83

0,65

0.61

1,20

0,45

1,57

0,26

0,08

0,80

1,38

2.39

0,01

1,59

1,03

0,19

1.36

HH-HV polarization.
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Table 2.

linear regression

vol. % row direction

0.65 0.64

068 0.66

0.64 0.77

0.69 0.80

nonlinear regression

gray. %
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x
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mnltible linear regre_,fion
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(I,92
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x

vol.% / mw d.

0.79

0.82

x

x
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INTRODUCTION

The knowledge of vegetation dielectric behaviour is important in studying the scattering

properties of the vegetation canopy and radar backscatter modelling. Until now, a limited number of

studies (Dobson et al., 1989, Hess et al., 1990, McDonald et al., 1992, Lang et al., 1993) have been

published on the dielectric properties in the boreal forest context. This paper presents the results of the

dielectric constant as a function of depth in the trunks of two common boreal forest species: black

spruce and trembling aspen, obtained from field measurements. The microwave penetration depth for

the two species is estimated at C, L and P bands and used to derive the equivalent dielectric constant
for the trunk as a whole. The backscatter modelling is carried out in the case of black spruce and the

results are compared with the JPL AIRSAR data. The sensitivity of the backscatter coefficient to the
dielectric constant is also examined.

DIELECTRIC MEASUREMENT AND OBSERVATION

The dielectric measurements of the black spruce and trembling aspen were carried out during

the June of 1990 at the experimental forests of Petawawa National Forest Institute (PNFI), Ontario,

Canada. The experiment was part of the SAR-boreal project initiated at the Canada Centre for Remote

Sensing in 1988 in preparation for operational RADARSAT applications in forestry. The portable

dielectric probe (PDP) of Applied Microwave was used for these measurements. The dielectric
measurements were made on the standing trees by incrementlly boring into the trunk and obtaining the

samples of the relative dielectric constant at each depth. The measurement proceeds along the radial
axis from the outer bark to the centre of tree trunks at the breast height of the tree (1.3 meters from

ground).

Figures 1 shows the profiles of real part of the relative dielectric constant inside the trunk of

black spruce and aspen at C, L and P bands respectively. The imaginary part is found to have high

linear correlation with the real part of the dielectric constant in general and is not illustrated here due to

the space limitation. It is seen that the dielectric constant peaks near the cambium layer and is much

lower in both the outer bark and sapwood regions. The heartwood region of the aspen displays a

higher dielectric constant than in the sapwood region, which is consistent with the field observation that

the heartwood region of aspen is often found to contain significantly more moisture content than in the

sapwood region. The dielectric profiles fluctuate, reflecting the inhomogeneity of the medium.

PENETRATION DEPTH AND EQUIVALENT DIELECTRIC CONSTANT

Depending on the microwave penetration depth and the physical size of the tree components
such as the branches and trunks, the microwave interacts with the portion or the whole of these

vegetation materials. It is therefore necessary to consider the microwave penetration depth at different

frequencies and incorporate it into the derivation of the equivalent dielectric constant of different tree

components for the radar backscatter modelling.

The microwave penetration depth is estimated using the formula (Ulaby et al., 1986, Pg.2019):

1 c
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where _ is the absorption constant of the medium, c is the speed of the light, f is the microwave

frequency, _' and _" are the real and imaginary part of the equivalent dielectric constant of the medium.

As a first approximation to the equivalent dielectric constant, the measured trunk moisture

content of trunk wood samples of two species together with the corresponding dry density (Gonzalez,

1990) are input to the dual dispersion dielectric model developed by Ulaby and EI-Rayes (Ulaby et al.,
1987) to derive the equivalent dielectric constant for these species. Table 1 lists the calculated

dielectric constant at C, L and P bands. These dielectric constants are then substituted into the Eqn. 1
to obtain the estimated microwave penetration depth, as is shown in Table 1.

Since the power of an electromagnetic plane wave inside a lossy medium decays at a rate of e _"'
where r is the distance from the surface of the medium, we compute the equivalent dielectric constant

of the tree trunk with the microwave power decay rate as a weighing factor, that is:

< _> _ f¢(,)_-'o'a, (2)
f e-Z,,,dr

where the integral is taken from the bark surface to the centre of the trunk. Applying Eqn.2 to the
sampled dielectric profile, we obtain the equivalent weighted dielectric constant. This is illustrated in
Table 1.

BACKSCATTER MODELLING AND SENSITIVITY ANALYSIS

An example is given here to illustrate the effect on the radar backscatter with the dielectric

constant derived from two different approaches, namely the dielectric model and the PDP sampled data.
The Michigan Microwave Canopy Scattering (MIMICS) model (Ulaby et al., 1990) is applied to a
typical black spruce stand in the Canadian boreal forest environment. Table 2 shows the backscatter

coefficients predicted from the MIMICS model and obtained from the JPL AIRSAR data which were

acquired in May, 1991 over the boreal forest test site near Whitecourt, Alberta. Despite the different

approaches in deriving the dielectric constant, the results show a very good agreement in the predicted
backscatter coefficient, with a discrepancy within one dB for like polarization and less than two dB for

the cross polarization for all three microwave frequency. The predicted backscatter coeffcients agree
exceptionally well with the SAR observation at C band, in particular with the dielectric constant derived

based on the microwave penetration depth. The MIMICS model, however, is seen to over-predict the
backscatter coefficient for like polarization at L band and under-predict the backscatter coeffcient for

cross polarization at L and P bands, which is presumably caused by the fact that the MIMICS model

does not account for the multiple (triple and over) scattering mechanisms in the computation of the
backscatter coefficient.

Table 3 illustrate the effect of the dielectric constant on the backscatter coefficient. The

dielectric constant of the black spruce is perturbed by 10 percent and the corresponding change in the
predicted backscatter coefficient is calculated. It shows that the backscatter is more sensitive to the

change in dielectric constant for like polarization at C band than at L and P bands. Among two like
polarizations at C band, the backscatter is more sensitive to the change in dielectric constant for HH
polarization than for VV polarization.
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Penetration Depth=Q._ cm

tl=10.65-j3.47 C_=17.14- _6.06
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e1=15.50-js.03 C:=14.42-j5.88

Penetration Depth=3.06 cm Penetration Depth-2.63 cm
L

_i =13. 31-j4.59 _=14.05-j4.10

Penetration Depth=6.08 cm

c.=15.80-j7.10 _z=15. i0 -j3.6 ,I

_=18.88-j6.35 _2=14.7"1-j3.78

Penetration Depth=4.89 cm

C1=21.89-j10.4 ez=17.71-j4.75

Table i. The ettimated microwave penetration depth and equivalent dielectric

constant of black spruce and trembling aspen tree trunks.

Mg.: the gravimetrlc moisture content (%)

Dry D.: dry denlity (9/cm'3)

_i: the equivalent trunk dielectric constant predxcted from the dielmctric model

82: the equivalent trunk dielectric constant derived from the PDP measure_4nt

Band

C-HH

o°(c:) _o°(+lO%z,)

[ -9.38 ] -0.71

4o°(-I0%¢ I)

0.88

C-W -8.79 J -0.32 (I. 39

C-HV -16.46 O. 01 -0.06

L-HH -2 . 49 -0.17 0.14

L-W -8.69 0.09 -0.14

L-HV -24.48 0.82 -0.91

P-HH -5.43 0.29 -0.16

P-W -13.39 0.37 -0.24

P-HV -28.87 0.31

The backsc_tter coefficient (in dB) Table 3.

predicted with MIMICS model and

obtained from AIRSAR obmervetion

for black spruce stand.

-0.19

The sensitivity of backacatter coefficient to
the Change in dielectric constant. The diels-

cilia constant le _ubed 10 percent and the
corresponding back_tter change (in dUB) is
shot_.
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Figure I. Dielectric profiles (real part) of black spruce and

trembling aspen tree trunks. The vertical scale is

the real part of PDP sampled dielectric constant.
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Caption

3-component RGB image of the study area; AVIPdS

data collected in August 1990. Blue = AVIRIS band

12; green = band 48; red = band 213.

Jasper Ridge example: The five endmember spectra

and their corresponding abundance images.

Color composites of the simulated and actual TM
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Selected linear spectral unmixing results for both

the empirical line and atmospheric-model
calibrated data.

Classification map, produced by a self-organizing
ANN.

A two-band image showing the spatial

relationship between the derived lignin and water
fractions across the site.

(A) shows the composite rendered on the digital

elevation model with tags (B-E) for the location of

the enlarged subareas of the horizontal (non-

rendered) composite. (B)-(E) show zoom-up

(=factor 5) parts with different aspect and slope

angles.

Fractional abundance images and associated

spectra of semi-arid landscape endmembers,

August 7, 1990.

AVIRIS image cube of Rogers Dry Lake, CA,
calibration site.

AVIRIS image cube of Moffett Field, CA, data set

showing San Francisco Bay and Moffett Field

runways.

The classified June 2nd image next to a vegetation

map (mapped in the field) for comparison.

AIRSAR views of Aeolian terrain.
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